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NOTES AND COMMENTS 443

SELECTION FOR OUTCROSSING, SEXUAL SELECTION,
AND THE EVOLUTION OF DIOECY IN PLANTS

The evolution of dioecy in plants has traditionally been explained as a result of
selection for outcrossing (Baker 1959; Carlquist 1966, 1974; Darlington 1958;
Darwin 1877; Gilmartin 1968; Ho and Ross 1974; Lewis 1942; Lloyd 1972, 1975;
Mather 1940; Maynard Smith 1978; Ross 1970, 1978; Ross and Shaw 1971; Ross
and Weir 1976; Stebbins 1951). Population genetical models, notably those of
Charlesworth and Charlesworth (1978, 1979) have indicated that inbreeding de-
pression is usually necessary for the evolution of dioecy from hermaphroditism.
Recently, the importance of outcrossing has been questioned independently by
several authors who, following Bateman (1948), propose that sexual selection
acting on the male and female components of hermaphrodites (see Charnov 1979;
Charnov et al. 1976; Janzen 1977) and selection for optimal resource allocation can
also explain the evolution of dioecy. Willson (1979, p. 779) presents her version of
this sexual selection hypothesis to counter ‘‘the kneejerk response that the ad-
vantage of dioecy and other functional differentiations of sexual roles in plants lies
solely in the advantage of outcrossing.’”” Givnish (1980) and Bawa (1980) also
question the causal role of selection for outcrossing in promoting dioecy and offer
alternative models based on the ecological roles of pollination and dispersal.
Although we applaud the development of new theory, we fear that this recent
cohort of ‘‘alternative’’ explanations may obscure some important reasons for
retaining the outcrossing hypothesis. Here we demonstrate that current knowl-
edge of the taxonomic distributions of dioecy and self-incompatibility systems
provides good reasons for assuming that selection for outcrossing may frequently
be a sine qua non for the evolution of dioecy.

Willson (1979), Bawa (1980), and Givnish (1980) provide variously detailed
scenarios in which differential male and female costs and success rates can lead to
dioecy independently of inbreeding/outbreeding considerations (see also Charnov
1979). Bawa and Givnish go on to document new ecological correlates of dioecy
which, they believe, provide evidence for the sexual selection explanations. In
general, the explanations cannot easily be refuted, because they make few explicit
assumptions about genetic mechanisms and because they depend on certain
relationships between costs and benefits that strongly resist quantitative study
because of difficulties in selecting and measuring a fitness-based cost/benefit
currency. For this reason we do not wish to debate the relative merits of specific
details of these various proposals, except to state that all of them seem to depend
on a rather high predictability of success for a particular genotype and on a high
degree of heritability of phenotypic gender (see Williams 1975, p. 130). Such
dependence may be unwarranted, given the plasticity of individual development in
plants (see Gottlieb 1977) and the great importance of spatial location in mating
success. Instead, we try to assess the overall importance of any mechanisms for
evolving dioecy which are independent of outbreeding considerations. We also
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address the correlative evidence offered by Bawa and Givnish and suggest possi-
ble ways in which selection for outcrossing could also explain some of these
correlations.

NEGATIVE CORRELATION OF DIOECY AND SELF-INCOMPATIBILITY

Because the alternative arguments of Willson, Bawa, and Givnish are deliber-
ately formulated to be free of assumptions regarding the extent of outcrossing,
‘‘sexual selection’’ as they describe it should operate equally well, and to the same
ends, in both self-compatible and self-incompatible species. Thus, if dioecy (or
any other type of dicliny) were caused only by sexual selection, it should occur
with equal frequency in self-compatible and self-incompatible groups of plants. If
it were caused in some cases by selection for outcrossing, and in some cases by
sexual selection, it should occur more frequently in self-compatible groups, but
should still appear in self-incompatible groups, although to a lesser extent. In
short, the frequency of dicliny in generally outbreeding self-incompatible groups is
a direct index of how effective the proposed ‘‘alternative’’ selective mechanisms
can be. The occurrence of dicliny, and in particular dioecy, in such lines appears
to be extremely rare.

Self-incompatibility systems are reported from 19 orders (East 1940) and 71
families (Brewbaker 1957) of angiosperms. Darlington and Mather (1949) sug-
gested that approximately half of all angiosperm species are self-incompatible.
While rarer, dioecism is also widely distributed among the orders of angiosperms
(Grant 1975). A notable feature of the systematic distribution of self-
incompatibility and dioecism is their strong negative correlation within taxonomi-
cally related groups (Baker 1959). There are relatively few families in which both
conditions occur and in such cases the families are large (e.g., Euphorbiaceae,
Polygonaceae, Rosaceae, Rubiaceae) and the two breeding systems are frequently
in different sections of the family (Baker 1967, personal communication). At the
generic level, with few exceptions (see later), the strong inverse relationship is
complete (Baker 1967). Where occasional hermaphroditic individuals of dioecious
and subdioecious species occur they are usually self-compatible rather than self-
incompatible (Charlesworth and Charlesworth 1979).

Among the other diclinous breeding systems a similar inverse correlation with
self-incompatibility is evident. Monoecy is almost always associated with self-
compatibility (East 1940; Godley 1955; Grant 1975; Maynard Smith 1978). Excep-
tions (where monoecy and self-incompatibility are apparently associated) include
Betula spp., Alnus spp. (Betulaceae); Castanea crinita, C. mollissima, Fagus spp.
(Fagaceae); Euphorbia cyparissias, Hevea brasiliensis (Euphorbiaceae); and
Spondias mombin (Anacardiaceae; Godley 1955; Bawa 1974; Hagman 1975). All
of these species except the Euphorbia are trees, making it likely that selfing might
occur because of branches in different developmental conditions. In Euphorbia
cyparissias, the close proximity of male and female flowers in cyathoid inflores-
cences is unlikely by itself to enforce outbreeding. Among gynodioecious taxa,
sexual dimorphism is almost always characterized by self-compatibility of her-
maphrodites (Charlesworth and Charlesworth 1978). However, a few cases of



NOTES AND COMMENTS 445

male sterility with self-incompatibility have been reported: Hirschfeldia incana
(Horovitz and Galil 1972), Rhus spp. (Young 1972), Plantago lanceolata (Baker
1963; Ross 1973), and possibly Cortaderia spp. (Connor 1973, but see Charles-
worth and Ganders 1979).

There appear to be two major exceptions to the general rule of a negative
association between self-incompatibility and dicliny within closely related groups.
In both cases, alternative mechanisms involving sexual selection of the general
form visualized by Willson, Givnish, and Bawa may be operative. Zapata and
Arroyo (1978), in a study of the breeding systems of tropical deciduous trees in
Venezuela, documented several examples of andromonoecious self-incompatible
species. They argue that dicliny has evolved from hermaphroditism and provides a
more efficient use of energy. Female sterility prevents an unnecessary outlay of
energy for initial development of fruits, a large proportion of which cannot be
matured because of limited resources. The frequent occurrences of massive floral
displays, self-incompatibility, and voluntary abscission of developing fruits among
tropical forest trees (Bawa 1974, 1980; Janzen 1975) suggest to us that an-
dromonoecy, which by itself is not a breeding system (Lloyd 19794 ; Primack and
Lloyd 1980) may prove to be more commonly associated with self-incompatibility
than are other manifestations of dicliny.

The second major exception involves heterostyly. Comparative studies of Mus-
saenda (Baker 1958), Nymphoides (Ornduff 1966), and Cordia (Opler et al. 1975)
suggest that dioecy has evolved from dimorphic incompatibility in the Rubiaceae,
Menyanthaceae, and Boraginaceae, respectively. Elsewhere in the Rubiaceae,
dioecy and distyly occur in Genipa and Randia (Bawa and Opler 1975) and
perhaps among populations of Mitchella repens (Meehan 1868, but see Keegan et
al. 1979). With the exception of Nymphoides, where self-compatibility occurs, it
seems unlikely that selection for outcrossing has been important in the evolution
of sexual dimorphism. Willson (1979) and Beach and Bawa (1980) suggest the
possibility of differential sex roles mediated by pollinator behavior in heterosty-
lous plants. Such gender specialization of floral morphs (Lloyd 1979a; Barrett
1980) may arise as a result of asymmetric patterns of pollen flow under an
ill-adapted or changed pollinator fauna. Genetic variation for ovule number in the
long-styled form and pollen production in the short-styled form would aid the
process of gender specialization as longs evolve femaleness and shorts maleness.
It is possible that sexual selection resulting from unidirectional pollination can
account for the evolution of dioecy in heterostylous plants, although it could be
argued that ‘‘style-morph selection’” might be a more appropriate description of
this alternative mechanism. This mechanism presumably has operated in only a
small fraction of the dioecious flora, because heterostyly is itself a relatively rare
breeding system among angiosperm families (Ganders 1979).

Givnish and Willson pay little attention to the relationship between self-
incompatibility and dioecy. Bawa (pp. 28-29) recognizes the importance of such a
relationship, but argues against attaching undue importance to it. He feels that the
presence of self-compatibility in the hermaphrodite members of families contain-
ing dioecious species need not imply that the immediate ancestors of the dioecious
taxa were also self-compatible, and that ‘‘Even though self-compatibility has been
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reported in some dioecious taxa on the basis of controlled pollinations in occa-
sional hermaphroditic flowers . . . , it is possible that the ancestors of such species
were self-incompatible . . . .”” While such switches are possible, we believe that
the great rarity of transitions from self-compatibility to self-incompatibility within
families makes these objections unlikely as well as unparsimonious.

ECOLOGICAL CORRELATES OF DIOECY

Although widespread among the angiosperms as a whole, self-incompatibility is
rare among island floras such as those of Hawaii (Carlquist 1966; Baker 1967),
New Zealand (Pandey 1979) and the Galapagos (Rick 1966). In contrast, dioecism
occurs at relatively high frequencies on several islands including Hawaii (27.5%)
and New Zealand (14.5%) compared to less than 5% for most continental floras
and the world flora (Baker 1967; Carlquist 1966, 1974; Lewis 1942; Yampolsky and
Yampolsky 1922). Baker (1967) has argued that the high frequency of dioecism
among insular floras is the result of selection for outcrossing following establish-
ment of self-compatible, hermaphrodite colonists. Self-incompatible species are
presumed to be poor colonists. In genetic terms, dioecy is easily established
whereas the evolution of self-incompatibility is a complex process and hence
occurs infrequently (Baker 1967; Pandey 1979; contra Givnish 1980, p. 967). Thus
the high frequency of autochthonously developed dioecy on islands may be
interpreted as an affirmation of the role of outbreeding. It seems unnecessary to
invoke sexual selection in these circumstances, as Bawa (1980, p. 18) indicates,
although he questions the degree to which dioecy on islands is autochthonous.

Bawa further considers the high incidence of dioecy on islands to be a partially
spurious correlation that really reflects a greater incidence of dioecy in tropical
regions because the well-studied islands are tropical (Hawaii) or have ‘‘tropical
elements’’ (New Zealand). However, examination of his table 1 shows that tropi-
cal islands still have considerably higher proportions of dioecious species than
tropical mainland. Bawa suggests that dioecy on islands may also be an indirect
result of yet another correlation, that of dioecy with animal-dispersal of fruits, a
point strongly developed by Givnish (1980). Givnish and Bawa believe that animal
dispersal entails a disproportionate selective advantage for individuals with large
fruit crops because dispersers favor concentrations of fruit. This can favor male
sterility under certain circumstances when a plant’s reproduction is energy lim-
ited. This argument exemplifies the well-known difficulty of making causal infer-
ences from correlations. Dioecy may be correlated with animal dispersal via
sexual differences in resource allocation, as Givnish and Bawa argue, or the
correlation may come about because animal-dispersed, self-compatible hermap-
hrodites have more often established small populations on true islands or ‘ ‘habitat
islands’’ and selection for outcrossing then favors the evolution of dioecy.

Clearly, correlations which can be explained as products of selection for out-
crossing or of sexual selection are of limited value in comparing the relative
importance of the two mechanisms. We gave the alternative explanations above
not to demonstrate incorrectness in Bawa’s or Givnish’s interpretations but to
indicate that ambiguities of interpretation remain. In sum, we remain convinced
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that the evolution of dioecy solely by sexual selection has been a rare event
because it appears that the evolution of dioecy from self-incompatible hermaphro-
dite ancestors has been a rare event. The same conclusion holds, but less com-
pletely, for other diclinous breeding systems. This conclusion rests on the nega-
tive correlation between dicliny and self-incompatibility. Bawa (personal com-
munication) believes this correlation will weaken as more tropical species are
studied. It should be noted that convincing demonstrations of the presence of
physiological self-incompatibility require more than an observation that seed set
from cross-pollinations is significantly higher than from self-pollination (see Brink
and Cooper 1947; Lloyd 1968). Separating inbreeding depression phenomena from
the effects of self-incompatibility requires studies of pollen tube growth and obser-
vations of rejection responses. If self-incompatibility and dioecy are found asso-
ciated in related groups, our conclusions will lose force. Even now, we do not
claim that mechanisms of sexual selection do not operate in plants; we believe it
likely that they may be important in influencing subsequent adaptive refinements
once sexual dimorphism has been established. Willson and Bawa both acknowl-
edge that selection for outcrossing may play a role in addition to the mechanisms
they describe, but we believe that its role is more critical than they imply.
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