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Trapline foraging—repealed sequential visits to a series of feeding locations—presents interesting problems seldom treated in
foraging models. Work on traplining is hampered by the lack of statistical, operational approaches for detecting its existence
and measuring its strength. We propose several statistical procedures, illustrating them with records of interplant flight sequences
by bumble bees visiting penstemon flowers. An asymmetry test detects deviations from binomial expectation in the directionality
of visits between pairs of plants. Several tests compare data from one bee to another frequencies of visits to plants and fre-
quencies of departures to particular destinations are compared using contingency tables; similarities of repeated sequences
within bees are compared to those between bees by means of sequence alignment and Mantel tests. We also compared observed
movement patterns to those generated by null models designed to represent realistic foraging by non-traplining bees, examining:
temporal patterns of the bee's spatial displacement from its starting point using spectral analysis; the variance of return times
to particular plants; and the sequence alignment of repeated cycles within sequences. We discuss the different indications and
the relative strengths of these approaches. Krj words: asymmetry test, Bombus, foraging, Mantel test, null model, Ptnsttwum,
sequence, trapline. [Bthav Ecol 8:199-210 (1997)]

If a foraging animal repeatedly visits a series of fixed re-
source points or "stations" in a fixed order, we describe

the behavior as "traplining" (e.g., Anderson, 1983). Such be-
havior provokes fascinating questions regarding its genesis,
maintenance, and utility. Maintenance and utility are treated
in companion papers (Thomson, 1996, Thomson J, Williams
N, in preparation). In this paper we confront some defini-
tional problems. Suppose that the set of visited stations ex-
pands or contracts on repeated passes through the array. Sup-
pose that the order of visitation is imperfectly replicated.
Traplining is easy to define only in its perfected, ideal state.
No one has proposed methods to detect traplining statistically
or to measure its intensity. This paper explores several reme-
dies, illustrated by observations of bumble bees (Bombus flav-
ifrons, Apidae) visiting a designed array of plants of PtnsUwum
strictus (Scrophulariaceae). Although we provide some de-
scription of what the bees are doing, the paper is essentially
a search for an operational definition of traplining.

The term "traplining" was apparently coined by D. H. Jan-
zen to describe a pattern of regularly repeated flower visits by
female cuglossine bees (see Proctor et aL, 1996: 135; Hein-
rich, 1979:177), although the term does not appear in the
most frequently cited reference (Janzen, 1971). The analogy
is to a trapper checking traps on a regular basis, and the term
has become widely used.

Well before Janzen coined the term, several naturalists stud-
ied what we would now call traplining, including Darwin
(Freeman, 1968) and Tinbergen (1968). One of Tinbergen's
students, Manning (1956), produced the most detailed ac-
count of these studies. More recently, traplining by Bombus
has been reported by Heinrich (1976), Thomson et aL (1982,
1987; Thomson, 1996), and R. A. Johnson (unpublished; see
Thomson et aL, 1982), while GUI (1988) has done extensive
work on hermit hummingbirds. Ackerman et aL (1982)
showed that male euglossines, which were previously thought
to be widely ranging vagabonds, may sometimes trapline
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plants much as females do. Aside from studies on flowerfeed-
ers, work on primates has evoked suggestions of traplining as
well (Garber, 1988;Janson, 1996; Milton, 1981).

Different criteria have been used to conclude that animal*
are traplining. Darwin and Janzen mostly drew their infer-
ences from die regular appearance of unmarked individuals
at particular stations (although Janzen marked some bees and
could identify others by individual characteristics). Darwin
noted that he regretted not marking individual bees. Janzen
presented one schematic flight map representing a "perfect"
trapline, but he did not indicate repeated flights. Without pre-
senting any flight maps. Manning simply stated that marked
bees retraced particular pathways. Heinrich (1976) showed
sketch maps of small numbers of flights by marked individu-
als; Thomson et aL (1982) presented similar maps based on
more observations. Because hummingbirds cannot easily be
followed through tropical forest. Gill's (1988) inferences
about traplining behavior derive from the regularity of die
reappearance of marked individuals at stations.

None of these authors tested movement patterns for signif-
icance. Testing is warranted, however, because any animal us-
ing a finite number of stations win occasionally retrace an
earlier path by chance alone, and a human observer might
subconsciously assign undue weight to such coincidences
(Pyke G, personal communication). Without objective, quan-
titative procedures for trapline detection, observations of diis
behavior will always seem soft and anecdotal, if not downright
dubious, but we currently have no accepted methods for dis-
tinguishing traplining from non-traplining behavior or for
comparing the strength of traplining among different ani-
mals.

Here we try to remedy this lack of methods. We are con-
cerned only with inferring traplining from sequence* of in-
terplant movements, not from reappearance schedules. As we
will show, traplining is subtle and difficult to demonstrate sta-
tistically. It is easy to subject movement data to tests that can
reject various hypotheses, but it is harder to devise a hypoth-
esis whose rejection can be considered a sufficient and gen-
eral demonstration of traplining. For example, we could easily
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Figure 1
Layout of the hexagonal array
of flowering PmsUmon strictui
plants. Interplant roaring is 1.6
m. The plants are divided into
several zones that are used in
generating null movement se-
quences. The arrows indicate
the model sequence used for a
simulation study of measures
of traplining strength (details
in text).
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reject the hypothesis that successively visited plants are ran-
domly drawn from all the plants in a population; no one
would claim that such a rejection demonstrated traplining,
however. For one thing, the definition of "population" would
necessarily be arbitrary: bees that randomly visited plants with-
in a subunit of the study area would appear nonrandom if the
entire area were considered. For another, bees that simply
moved in such a way as to reduce interplant flight distances
(see Pykc, 1978) would fail to match this overly simplistic null
model, but they would not show the repetition of flight se-
quences that (we argue) is an essential characteristic of trap-
lining. Even if a bee were shown to repeat some visit sequenc-
es, this need not be a certain indication of traplining. A per-
fectly randomly foraging bee would occasionally repeat some
sequences. The important question is how much repetition
constitutes evidence of significant traplining. As soon as one
discards true randomness as a meaningful null hypothesis, it
becomes virtually impossible to frame a null hypothesis that
is neither complicated nor ad hoc.

We pursue several different approaches, each of which il-
luminates one aspect of the structure of interplant moves. The
obvious approach is to construct null models of non-trapline
foraging, use these models to generate non-traplining se-
quences, and compare various properties of our observed se-
quences to those of the model. This strategy hat a clear Achil-
les' heel: the null model will always be arbitrary, subject to no
authority more reliable than common sense. Therefore, we
also adopt a less arbitrary procedure that instead asks whether
repeated sequences by individual bees differ from those of
other bees. We first present several different analyses based
on the frequencies of particular categories of movements,
then develop a strategy based on pairwise similarities among
sequences. This culminates in a Mantel test that establishes
simultaneously whether the repeated sequences flown by a
bee are significantly individualistic and self-cnnilar in compar-
ison to sequences flown by all bees in a data set. Testing the
individuality of bees within a group is not, of course, the same
as testing a single bee against randomness, but behavioral
ecologists would find both tests relevant to characterizing trap-
lining behavior.

GENERAL METHODS

To obtain data on which to test statistical methods, we sought
a plant-bee system in which we could record long sequences
of plant visitation by numerous bees. We chose PensUmon stric-

tus because of its high natural vistation rate. This specie* is
locally abundant in disturbed roadside habitats below about
3000 m elevation in the West Elk Mountains of Colorado.
Plants produce numerous large flowers with a strong nectar

. flow and a gradual release of pollen that promote very high
visitation rates by bumble bees. Our experiments were done
above the natural altitudinal range of the plant, in a flower-
rich subalpine meadow at Irwin, Colorado, USA (107°06'00"
W, 38°52'35' N, elevation 3140 m). To our knowledge, no P.
strictus occurs within several kilometers of the study site. In
early June 1990, we planted 37 potted plants in a hexagonal
array (Figure 1). The interplant spacing of 1.6 m was chosen
to be close enough to allow bees' flights to be easily followed,
but far enough that neighboring plants were clearly distinct
The surrounding vegetation was neither weeded nor mowed,
so other species of flowers were also available in the array, but
these are not shown in Figure 1.

As the plants came into bloom in late July, we used hobby
paints (Floquil Corp., New York) to place unique marks on
the thoraxes of visiting bumble bees. To stress the bees as little
as possible, we caught them in an insect net, immobilized
them in a fold of the net, and quickly applied paint through
the net's mesh. Most bees were released within 60 s, and a
substantial fraction of them returned immediately to foraging.

Over the next several days, two to five observers with tape
recorders followed marked bees, noting the times and the se-
quences of plants visited. Of approximately 30 bees marked,
at least 20 were seen again in the array. However, we concen-
trated on a few bees that appeared to spend most of their
time in the study plot, and ultimately chose three Bombusflav-
ifrons workers for intense scrutiny. Observers would follow any
marked bee if one of the three focal bees were not present,
but when a focal bee was seen, an observer would switch to
it. From these three bees, we compiled four data sets that are
analyzed here. Blue early, red-blue, and pink data sets include
all data for the indicated bees from 23 to 28 Jury; blue late
include* all data for bee blue on 5 August (Neither red-blue
nor pink were still working on 5 August) For some purposes,
we further subdivide the blue early data set into two subsets,
23-26 July and 27-28 July. Observations covered the entire
activity period of the bees, roughly 0800 to 1800 h.

Because we were interested in flight-path geometry rather
than pollination, we recorded a plant visit if the bee ap-
proached within 5 cm of an open flower, even if it rejected
the flower without alighting. Such rejections were compare-



Thomson et sd. * Traplining by bees 201

lively rare; more often, the bee landed for at least a brief
inspection before rejecting a plant

Even with dose observation, we occasionally lost sight of a
bee in mid-sequence. Unless it was sighted again within a few
s, we terminated the sequence, beginning a new sequence
when the bee was rediscovered. All the bees occasionally vis-
ited flowers other than Ptnsttmon stridus. Such visits were re-
corded on tape, and the locations of the non-PtnsUwum plants
were mapped, but the analyses presented here exclude non-
Pttutemon visits. Thus a sequence of Ptnsttmon 3 to HtUnium
to Ptnsttmon 5 is here recorded as Ptnsttmon 3 to PtnsUmon
5. Almost all the non-Ptnstrmon visits were short breaks in
what was overwhelmingly itoutemon-dominated foraging; how-
ever, pink was an exception, in that she began to regularly
include several Lupinus sp. plants in her foraging, especially
on 27-28 July.

The various statistical treatments of the data are described
separately below. Where our purpose is primarily to illustrate
a methodology, we may show the analysis only for selected
data sets.

RESULTS

Foraging time budget!

The three focal bees spent most of their foraging time in the
array. This was best documented for blue on 5 August. A sin-
gle observer tried to follow this bee (and no others) contin-
uously from about 0900 until about 1530 h, taking brief breaks
when the bee appeared to be leaving for the hive. The total
observation period, including breaks, was 22,485 s; blue was
in sight for 20,482 s, or 91.1% of the total As the observer
never saw the bee enter the array, but found her only after
she had begun foraging, the 91.1% figure underestimates the
time she truly spent in the array. We infer that she probably
foraged entirely within the array, spending the remaining 5%
or so of her time flying to and from the nest and depositing
or picking up food there.

This bee had a characteristic way of leaving the array: from
one of several Pmstemon stridus plants in the northwest cor-
ner, she would fry in a straight line west-northwest, at about
0.7 m off the ground, passing through a small gap between a
large spruce tree and a 2-m spruce sapling. After leaving in
this manner, she never reappeared in the array before 3-4
min had passed. We inferred that this was her route home.
She tended to make such flights at regular intervals. From 26
through 28 Jury, we observed- enough of these departures to
establish 12 bout lengths (Figure 2). These are calculated as
the times between successive departures for home, so they
include time commuting and time in the hive. There is a
strong peak in the frequency histogram, indicating relatively
constant trip times. Based on the minimum times between
departures and reappearances in the array, we estimate about
29 min foraging and about 4 min travel plus nest time for a
bout by this bee. By 5 August, blue's trips had become signif-
icantly longer (Figure 2; Mann-Whitney I/test, [/«= 70, N =
12, 5, p < .001).

The bees would make several passes through the array on
one trip from the hive. At the plants that blue visited most
often, for example, she would appear approximately every 10
min. Therefore, she would typically visit such a plant three to
four times on one trip. Considering all bees, large plants re-
ceived visits roughly every 100 s. Elsewhere, we consider the
temporal patterning of visits, using other data sets (Thomson
J and Williams N, in preparation).
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Figure t
Frequency histogram for the lengths of 12 foraging bouts
(including nest time and commuting) by bee blue on 26-28 July
(open ban) and for 5 bouts on 5 August (filled bars).

Rewards

Bumble bees showed two behaviors at flowers of PtnsUmon
stridus. The most abundant species, B. flavifwns, typically en-
ters the flower right-side-up and probes for nectar. There are
two lateral nectaries deep in the tubular flower, and one can
often see the bee shift position slightly when switching from
one to the other. Such bees do not actively collect pollen in
the sense of manipulating the anthers (which lie on the roof
of the tubular flower); nevertheless, they usually do accumu-
late small corbicular loads of PtnsUmon pollen, through
grooming movements that eventually bring passively applied
pollen to the hind legs. An alternative behavior is most often
shown by B. bifarius (and possibly the «imilar B. syhncola):
these bees enter the flower upside down, grasp the anthers
with their legs, and vibrate the flower with a characteristic
buzz of their flight muscles. Occasional individuals of B flao-
ifrons mix the two behaviors, but all three of the focal bees in
this study showed only nectar-probing behavior at Pmstemon
stridus. Nevertheless, they varied in the extent to which they
accumulated pollen loads. Red-blue always carried small loads
(Le., the corbicular surfaces of her tibiae were never more
than half covered). Pink always collected large loads, her cor-
biculae full and bulging. Pink's predilection for visiting lu-
pines as well as penstemons may have contributed strongly to
her greater pollen acquisition. Blue tended to accumulate in-
termediate loads during the earlier observation period, but
on 5 August, she collected no visible loads at all.

Flight patterns

Figure 3a-e shows all of the intcx-Ptnsttmon flights for the five
selected data sets (blue early is subdivided for clarity). Each
bee visited plants throughout the patch, but there is a clear
tendency to concentrate visits within a portion of the array,
especially for blue and red-blue, who both preferred the
northern half of the array. In contrast, pink ranged more
widely. (At the same time, other bees were showing similar
preferences for other parts of the array.) Blue's preference
for the northern half crystallized with time (compare early '
and late data sets). These maps show that none of the bees
showed strong traplining, in the sense of always going to the
same destination from one point of departure. On the other
hand, closer inspection of the maps shows that moves from



202 Behavioral Ecology VoL 8 No. 2

a. Blue earty, first part
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b. Blue late

c Rea-biue d. Pink

Figure S
The hexagonal array, with interplant moves shown for selected data sets. The later half of the blue early daty set is not shown. Arrowheads
indicate directions of flights.

certain plants were indeed highly directional. At other deci-
sion points, the same bee's departure directions might be
much more haphazard. The maps also suggest that the edges
of the arrays were important in channeling the bees' move-
ments; however, some internal transtions were highly direc-
tional

On 25 and 27 July, we counted the number of open flowers
on each Ptnstemon plant. There was little change in these val-
ues over this short period. The total number of visits paid to
each plant was weakly but significantly correlated with the
number of open flowers (Table 1).

Although bees tended to visit more floriferous plants more

frequently, this did not cause them to converge in their use
of plants. For example, although blue and red-blue did over-
lap extensively in their foraging areas and even in their gen-
eral directionality (see below), they distributed their visits dif-
ferently across plants (2 X 37 contingency table, with plants
lumped where expected values were less than 5; x* m 101.3,
24 df, p < 10""). All other pairwise comparisons of the four
data sets were significant at p < W'1.

All bea overwhelmingly tended to fly between immediately
neighboring plants (Table 2). There is a suggestion that the
three bees differ in their distributions of distances flown (3
X 4 contingency table, G - 12.48, p ™ .052), but this might
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Table 1
Pearson correl
number of flowers open on that plant for Tarioot data Kts (H « 37
for each)

i of the number of visits to a plant and die
Tablet
Classification of in

Flower census

Data set 25 July 27 July

Blue, 23-26 July
Blue, 27-28 July
Red-blue, 23-28 July
Pink, 23-28 July

0.452**
0.474**
0.504 (m)
0.505**

0.502**
0322**
0.351*
0.524**

.05; .01.

reflect differences in opportunity rather than differences in
flight behavior bees that foraged more often at the edges of
the array, as opposed to the center, faced a somewhat different
distribution of potential neighbor categories.

Tramllion matrices and an i metry teat
The next series of tests are based on the transition matrix,
where each interplant movement is cast into a 37 X 37 table.
Rows indicate the plant the bee moved from, columns indi-
cate the plant a bee moved to. If a traplining bee follows a
particular path each time it passes through an array of plants,
we would expect the transition matrix to be asymmetrical
about the main diagonal; for example, the number of moves
from plant 1 to 2 would differ from the number from 2 to 1.
Our test followed a suggestion of Oden's, previously used by
Sokal (1991): for each pair of plants, we calculated the bino-
mial probability of the observed departure from a 1:1 expec-
tation. To test the entire transition matrix, we used Fisher's
method of combining probabilities (Sokal and Rohlf, 1995:
794). We eliminated from consideration any plant pairs for
which the data set contained fewer than six transitions, be-
cause such pairs give little information on directionality and
therefore dilute the test's effectiveness. By this procedure, all
data sets for blue and red-blue showed highly significant asym-
metry (J> < .01), but pink's movements did not (p > .05).
Further trimming the data set to eliminate pairs with <10
transitions did not change these results. Note that this tech-
nique detects only unidirectional traplining: if a bee com-
muted back and forth along a particular sequence of plants,
transitions would be symmetrical, even though we would con-
sider such commuting to constitute a special case of traplin-
ing.

IVapfine skeleton *W*ywm

We then used the asymmetry analyses to produce a graphic
representation of trapline structure. In Figure 4, symbols de-
scribing the frequency and directionality of interplant moves
are superimposed on the map of plant locations. These maps
emphasize those portions of a bee's movements that show
structure consistent with noncommuting traplining. It is ap-
parent that bee pink showed little such structure, in contrast
to the other two focal bees, which showed a general tendency
to pass through the array in a clockwise fashion.

Individuality of movements

Above, we showed that the bees with the most nimilar use of
plants (red-blue and blue) still used their plants with different
frequencies. Now we test a second aspect of individuality,
when two focal bees have arrived at the same plant, do they

Tptant viste by neighbor statin

Neighbor category

Data set Nearest Second Third Farther

Blue early
Red-blue
Pink
Tool
Fraction

741
255
285

1281
0.856

56
33
26

115
0.077

35
16
7

58
0.039

19
12
12
43
0.029

"Nearest neighbors" are at adjacent vertices in the hexagonal array,
1.6 m apart. "Second nearest" neighbors are >1.6 but <3 m apart.
"Third nearest neighbors" are two vertices (3 m) apart, and
"farther neighbors" are >3 m distant.

move to the same set of plants or do their destinations differ?
We tested this by constructing for each plant and for each
pair of bees (actually, data sets) a 2 X n contingency table
[(bee data set A versus bee data set B) X (the n nearest neigh-
bors of the plant in question) ] . Thus, for each plant, we could
evaluate the probability that the departure distribution was
independent of bee identity; then we combined the probabil-
ities across plants, using Fisher's test as before. We eliminated
any plants from which either bee of the tested pair departed
less than twice. For each of the six possible pairs of data sets,
there is at least one plant at which the bees differ in their
departure distributions at p < .006. Combining data from all
plants, all pairs differ at p < 10~*. Thus, all bees make indi-
vidualistic departure decisions when they are at the same
plants.

Direct comparison of sequence data

The above analyses depended only on transitions between suc-
cessive pain of plants. To complement this approach, we con-
sidered longer sequences. So that we could compare sequenc-
es within and between bees, we scanned all data sets for all
sequences that began and ended with the same plant (hence-
forth, the "terminal plant"). Sequences of length 3 (e.g., I to
2 to 1) were eliminated because they often represented a bee
that had left a plant before it "intended" to—sometimes be-
cause of disturbance by observers, other insects, or a gust of
wind!—and then returned after a brief inspection at a nearby
plant We then subjectively chose a terminal plant for which
several sequences were available in each of the bee data sets;
for the analysis presented here, plant 8 was chosen. This pro-
duced a number of sequences of varying length.

Next, an index of similarity was calculated for all pairs of
sequences using a simple technique used for aligning DNA -
sequences (Waterman, 1989). Although alignment methods
are often complex and controversial, in our case where the
endpoints are fixed, it was easy to derive an index that counts
how many insertions or deletions are necessary to render two
sequences the same. The algorithm is best understood by en-
visioning the two sequences written out as the row and col-
umn headings of an n X m matrix where n and m are the
lengths of the two sequences. The elements of the matrix are
scored as 1 if the row and column headings m^trh or as 0 if
the headings differ. Then dummy rows and columns are in-
serted to put as many of the l's as possible on the principal
diagonaL As our index of similarity, we divided the number
of matches on the diagonal of this expanded matrix by the
total number of cells along the diagonaL We did not count
the terminal cells, which were forced to match. For n sequenc-
es, this produced a symmetric nX n similarity matrix.
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a Blue early, first part
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Figure 4
TrapUne skeleton maps summarizing the raw maps shown in Figure S. Arrows indicate Interplant transitions for which the bee in question
showed directionality. The size of the arrowhead indicates the significance of the directionality: large, medium, and small arrowheads denote
p levels of .01, .05, and .1, respectively. The size of the shaft of die arrow indicates the total number of transitions observed: large, £15;
medium, 9-14; small, 6-8. Where directionality was Insignificant even though traffic was high (p > .1), diamonds denote sample size (large
diamonds, 215 transitions; small diamonds, 6-14). Stars indicate non-Ptnsttmon plants (not included in numerical analyses). No map is
shown for the pink data set because so few transitions showed significant directionality.

The similarity matrix could be subjected to any of the stan-
dard ordination or clustering techniques that employ such
ma trices. Because we were more interested in a significance
test for traplining, we m t̂i-a^ used a Mantel test (Mantel,
1967; Sokal, 1979; Sokal and Rohlf, 1995). as follows. We pro-
duced an n X n design matrix that contained 1 's in the cells
where the similarity matrix contained sequences produced by
the same bee and 0's in the cells where the similarity matrix
contained sequences produced by different bees. That is, the
design matrix represents an ideal case in which all sequences
generated by one bee show perfect similarity, and all sequenc-
es generated by different bees are completely different The
Mantel procedure computes a correladonlike statistic r (the
standardized Mantel statistic), that shows how closely the ob-
served similarity matrix resembles the ideal design matrix. To
assess the significance of r, a randomization process then per-
mutes the values in the similarity matrix by redistributing the
values across the rows and columns. We produced 999 per-
mutations, calculating rfor each one and comparing the true
observed value of r to the distribution of the 999 randomized
versions. The observed matrix was more similar to the design
matrix (r = .162) than any of the 999 randomizations, i.e., p
< .001. Therefore, sequences within bees (or, more precisely,
within data sets, because the bhie early and blue late sets are
here being contrasted as if they were from different bees)

resemble each other significantly more closely than they re-
semble sequences from different bees.

Generating null sequences

Rather than comparing bees with each other, we now compare
each data set to neutral expectations. As noted in the intro-
duction, the simplest hypotheses for non-traplining move-
ment (e.g., random plant choices) are too simplistic to be
informative about traplining. We know that bees tend to move
toward near neighbors in many circumstances (Morse, 1982),
including our array (Table 2). Our data would emphatically
reject the hypothesis of random moves, but we would not con-
sider this to demonstrate traplining. Tnstrad, we take the ob-
served tendency to make short moves as a fundamental com-
ponent of foraging that we would expect to see in non-trap-
lining and traplining bees alike. It forms a basic constraint in
our nuD model. As an additional constraint, we also regard a
bee's aversion to returning to just-visited plants as another
fundamental component For a bee to be traplining, in this
view, its movements must contain a higher-order repetitive
structure that cannot be produced by the simple action of
these two constraints.

We could not simply use the observed probabilities of first,
second, etc., nearest-neighbor moves to condition the null
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Blue early, longest sequence in data set

10 20 30 40 50 60

Step number (for displacement); Frequency dass (for penodogram bars)

Figure 5
Spectral analyst of spatial dis-
placements from the starling
point for the longest sequence
in the tint data set. The ftrst
three null sequences are also
shown. The solid line, based
on the left y-axis, indicates the
bee's straight-line distance
from the starting plant as a
function of the number of in-
terplant moves or steps that
the bee has taken since leaving
that plant. The shaded bars,
based on the right y-axis, are
the penodogram (i.e., the
squared Fourier amplitudes),
indicating the power of the se-
ries at the frequency indicated.

model because the numbers of neighbors in each dass vary
with a plant's position in the array. For example, central plants
have six equally near neighbors, but corner plants have only
three. Therefore, we divided the array into five zones (Figure
1). From the data, we calculated the zone-specific frequencies
of first, second, third, fourth, and farther nearest-neighbor
moves ("neighbor classes") for each bee moving from plants
in each zone. Casting these data into a three-way contingency
table (bee X zone X neighbor class) revealed a significant
three-way interaction; i.e., the bees had idiosyncratic proba-
bilities of moving different distances, depending on where
they were in the array. We therefore did not pool the data to
calculate an overall set of zone-specific neighbor-class move-
ment probabilities, but rather used the individual probabilities
for each "bee" (actually, each data set) to generate null se-
quences for comparison to that bee's observed moves.

Similarly, we examined the data for bee-specific and zone-
specific probabilities of a bee retracing its steps. We looked
for one-step retraces (a to b to a) and two-step retraces (a to
* to c to a). Both were rare, occurring in 1.11% and 1.92%
of the cases, respectively. Neither the bee nor the zone of
origin significantly affected these probabilities, so we used the
pooled estimates in all cases.

In practice, we generated a set of 999 null sequences for
each of the observed sequences longer than 19 moves. Our
algorithm started the null bee at the same plant at which the
observed sequence started and produced a sequence of the
same length. Obviously, the first move could not be a retrace,
and the second move could not be a two-step retrace, but
whenever a retrace was possible, we drew a random number
to dedde whether a retrace would occur, using the observed
probabilities. If we drew a retrace, we moved the bee accord-
ingly and went on to dedde on the next move. If we did not
draw a retrace, we selected a second random number and
used it'to select a neighbor class (i.e., nearest neighbor, sec-
ond nearest, etc.). Having dedded on a neighbor class, we
determined which plants qualified as possible, non-retrace
destinations, then randomly chose one of them to be the des-
tination.

Spatial dfapla rtinalyn

We compared observed and null sequences in several ways.
We looked not at sequence data per se but at the x-y coor-
dinates of the plants visited. We could then calculate die Eu-
clidean distance of the bee from its starting position as a func-
tion of the number of moves it had made ("step number").
These displacements are equivalent to time series and are
highly periodic (Le., sinusoidal) if the bee is faithfully repeat-
ing a circuit. Null sequences should be less so. We followed
the recommendations of Wilkinson (1990) to compute spec-
tral analyses of the periodicity of the displacement series using
the SYSTAT package. Choosing only the longer sequences, we
padded the end of each sequence with zeroes to extend its
length to a power of two. We then conditioned the data by
first subtracting the mean from each value, then applying a
split-cosine-bell-tapering function to downweight the ends of
the sequence. (Deviating from these recommendations pro-
duced only minor changes in results.) We then performed a
Fourier decomposition of the conditioned series. We used 32
frequency classes, regardless of the length of the series. The
squared magnitudes of the Fourier coefficients are graphed
against the frequency classes to produce periodograms. These
are displayed, along with the displacements themselves, for
the longest sequences in the blue early data set, along with
the first three of the matching nulls that we generated (Figure
5).

The observed displacement series appears more regularly
periodic than the nulls, which show more of the character of
constrained random walks. Graphs (not shown) for blue late
had a similar character; red-blue and pink had sequences that
were too short to show such dear cydidry, although the nulls
still looked less cyclic than the real data. In the periodograms,
a simple sinusoidal function would produce a single sharp
peak at the frequency of the sinusoid; more irregular pattern-'
ing would cause the peak to be less defined or absent The
real sequences do in fact show prominent peaks. Most often,
the periodograms for the null series either lack a distinct peak
or have a peak nearer the origin than the observed data. Un-
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TableS
Analysis of distributions of return

Data set
Sequences
analyzed

in observed and null sequences

Ratio of observed variance to index

Weighted null variance
(inin, med, max) Mean ratio

Significance for all sequences combined

Sign test Fisher's combined test

Blue early
Pink
Red-blue
Blue late

20
4
6
5

0.034, 0.668. 3.584
0.611, 1.091. 2,785
0.282, 0.620, 0.867
0.130, 0393, 0.446

0.846
1.244
0.568
0.367

p< .03
__•

p< .05
—'

.05 < p < .1
£ < p < .1 (ns)
£ < p< .1 (ns)

p< .001

To be included, observed sequences had to be 20 or more steps long, with at least one return.
•Too few sequences.

fortunately for our goal of testing for traplining, the perio-
dograms include too much information to be well summa-
rized by a single parameter. This prevents a randomization-
based significance test.

^ r i m c c in return lengths

We used sequence data, looking at the distribution of "return
lengths," i.e., the number of steps taken before returning to
the same plant Our algorithm counted all returns to all
plants, so one sequence typically contained a number of re-
turns. We calculated the variance of these returns for each
observed sequence and for its 999 null equivalents. Perfect
traplining should produce a variance of zero; imperfect but
significant traplining should yield a variance among the lowest
5% of the nulls. Some null sequences contained no returns
or only one, leaving the variance of return lengths undefined.
A total lack of returns is equivalent to a total lack of traplining,
so for ranking the observed sequence with respect to the null
sequences, we scored all nuLU that lacked returns as if their
variances had been higher than the observed sequences.

The results (Table 3) are roughly concordant with the re-
sults of the asymmetry tests. None of the four sequences from
pink showed a significantly lower variance than the matching
null distributions, suggesting again that this bee was not trap-
lining. The blue early, blue late, and red-blue data sets con-
tained some sequences for which the observed variance was
significantly lower than for the null equivalents but also con-
tained sequences for which this was not true. To combine data
from different sequences, we used both sign tests and Fisher's
combined probabilities test. For all bees, seven sequences had
higher variances than the null expectation, while 28 had lower
variances (p < .01, sign test). However, considering the bees
individually, only blue late had a «ignifir?nt Fisher's combined
test (p < .001). Blue early is significant at p < .05 by the sign

T»ble 4

repeated sab-aequence* in observed and mill sequences

Data set

Blue early
Pink
Red-blue
Blue laje
Pooled

Sequences
analyzed

8
1
3
4

16

Mean
p value

.184

.284

.172
J75
.236

Overall significance
(by Fisher's test)

<.O25
>.l (ns)
<-l (ns)
<.l (ns)
<.01

Statistics were denned only for observed sequences in which die
bee returned to the initial plant twice, so only longer sequences
could be analyzed.

test (5 greater, 15 less) but not quite significant by the Fuher's
test (.1 < p < .05). Similarly, red-blue is significant by the sign
test (0 greater, 6 less), but not by the Fisher's test. With only
four sequences, neither pink nor blue late can be subjected
to the sign test.

We calculated an index of return variability for each data
set. For each sequence, we divided the variance of the return
lengths for the observed sequence by the mean variance of
return lengths in the matching set of 999 nulls. We then took
as our index die weighted mean of these ratios for all the
sequences within a data set, using sequence length as a weight-
ing factor. Our rationale for weighting was that longer se-
quences generally contain more returns and therefore give
more reliable information about the distribution of returns.
The weighted mean ratio should be zero for a perfectly trap-
lining bee and 1.0 for a non-trapliner that exactly matches the
null model; thus, the index of return variability captures an
important aspect of traplining. As expected, pink is the most
variable, blue late the least (Table 3).

Finally, we examined die internal similarity of sub-sequenc-
es within sequences. If the bee returned to the starting plant
twice or more in die same sequence, we computed the simi-
larity measure based on nmimnm alignment (as used above
for the Mantel test) for all pairs of sub-sequences that started
and ended widi that terminal plant. This provided a measure
of how consistently die bee repeated a path through the array;
sequences by traplining bees should have high internal simi-
larity. Again, we computed die same statistic for each of the
999 nulls, ranked die observed sequence among die nulls to
produce a p value for each observed sequence, then used Fish-
er's test to arrive at a combined probability across all sequenc-
es (Table 4). Because this test requires at least two complete
cycles within each sequence, it can be computed only for lon-
ger sequences. Only 16 sequences, across die four data sets,
meet this criterion. For only one of these, a sequence from
blue late, is die individual-sequence p value significant at die
.05 level However, when p values are combined across se-
quences, die blue early set becomes significant at p < .025,
and when die four data sets are pooled, p < .01. For die
sequences that meet the test's criterion, mere is a weak but
significant tendency for repeated cycles in die observed se-
quences to resemble each other more than cycles in die null
sequences do.

Comparison of J**Am*r perfonnrace

To gain additional insight into die behavior of die various
approaches for measuring die intensity of traplining, we cre-
ated simplified synthetic sequences that embodied various
strengths of repetition, as follows. Using die hexagonal array,
we produced a model sequence diat began at plant 1 and
returned mere after describing a simple noncrossing loop of
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20 nearest-neighbor steps with no first-or second-step retrace*.
We then simulated sequences of 401 steps in which "bees"
started at plant 1, then repeated this path with varying de-
grees of fidelity determined by a trapline-strength parameter,
L When the bee was at any plant in the model sequence, it
moved to the next plant in the model sequence with proba-
bility L With probability (1 - f), the bee moved randomly to
any nearest neighbor. When the bee strayed from the model
sequence, it moved to randomly chosen nearest neighbors un-
til it returned to a plant in the model sequence. Thus, for t
» 1.0, the bee repeated the model path exactly, returning to
plant 1 after 20 identical drcuits of perfect traptining. For t
— 0, the bee moved in a random nearest-neighbor walk, sub-
ject to the constraint on retraces: no traplining. For inter-
mediate value* of t, the bee would tend to follow the model
path but would be subject to getting lost more or less often.

We generated sequences for values of t ranging from 0 to
0.9 by tenths, then subjected them to three of the analyses
described above: asymmetry test, variance of return lengths,
and within-cequence alignment of subsequences. To summa-
rize the results of the asymmetry test, for each value of t, we
calculated a simple asymmetry index, based on the Fisher's
combined test, by dividing the sum of the logs of the binomial
transition probabilities by the number of ij pairs in the test.
This is essentially equivalent to dividing a G statistic by its
degrees of freedom. We then scaled these asymmetry indices
by dividing each one by the asymmetry index for t • 0.

For the variance of return lengths and the within-sequence
alignment statistics, we generated 999 runs per (value, then

. used the t • 0 sequences as the null baseline to which we
compared the others for significance testing (as well as for
scaling). (Using the null-sequence algorithms that contained
bee-specific transition probabilities would have been inappro-
priate.) In addition to "»''~vl?^r|g the variance and alignment
value* for a single simulated sequence of length 401, as we
did for the asymmetry index, we also calculated the mean of
the 999 iterated sequences for each tvalue.

The results (Figure 6) suggest that all three indices vary
systematically with t, as expected. However, values of ( < 0.5
produce sequences that are virtually indistinguishable from
random walks. At low t values, apparently, bees tend to wander
off the model sequence more frequently than they return to
it. Only at relatively high values of t did we produce sequences
of length 401 that showed "significant traplining" according
to the tests described above. Sequence similarity becomes in-
significant below t•> 0.7, although significant asymmetry re-
mains at t — 0.5. This makes sense; the algorithm used will
still generate some level of asymmetric transitions whenever
the bee wanders back into- the model sequence. If real trap-
lining follows this model closely, a weak tendency to trapline
(Le., small t value) win be difficult to detect. In this small
study, the variance of return lengths method was the most
problematic for significance testing, in that some sequences
with lower t values were more «ignlfir-ant than some with high-
er values.

DISCUSSION

Possible levels of trapBnmg

Our study b at the level of the plant This is a reasonable
choice; as Manning (1956) and others have shown, bees do
learn the locations of potted plants and return there after the
plants have been taken away. However, traplining might also
occur at larger or smaller scales (e.g., among flowers, whorls,
or inflorescences offered by a single plant, or among dumps
of plants or even subpopulations). A full analysis would in-
clude these other hierarchical levels.

12-

10-

8

6

4

2

0-1

Asymmetry index

1-

0-

0.0 0.2 0.4 0.6

Variance of return lengths index

0.8 1.0

0.0 &2 0.4 0.8 0.8 1.0

e-i

Internal subsequence aSgnment index

0.0 0.2 0.4 o.e 0.8 1.0

Strength of traplining parameter, f

F|£U1'G 6

Responses of three indices of traptining to variation in trapline
strength in shmihrrd sequence! generated by a stochastic algorithm
incorporating the trapline-strength parameter, t, as described in the
text. Filled symbob represent indices calculated for single sequences
of length 401; asterisks replace filled circles for indices that
significantly exceed those generated by a null algorithm. Open
circles indicate mean* for 999 stochastic sequences. The three
Indices are described in the text.

What the bees are doing

All of the bees examined restricted their foraging spatially to
the PmsUmon strictus array, although all occasionally visited
plants of other species as minor components of their foraging
(c£ Heinrich, 1979). Our analyses neglect these inconstant
visits, not because they are uninteresting but because they
were numerically rare and because they were difficult to in-
corporate in our models. This restriction to a small, local for-
aging area is interesting in itself. Although it is not a focus of
our study of trapline detection, it is a prerequisite for traplin-
ing to occur at the scale of our study. Traplining does seem-
to occur in this system. Of the three focal bees, two were fairly
consistent in showing nonrandom, repetitive movement pat-
terns among plants. The third, pink, was fairly consistent in
conforming to null hypotheses, although we suspect that we
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could have detected significant patterning of her movements
with larger data sets.

We do not know whether bumble bees usually trapline. Be-
cause many observations are needed, one can detect it only
in plant specie* that receive high visitation; these species prob-
ably have unusual reward amounts or schedules. There are
also observational biases. In choosing a focal bee for accu-
mulating a large data set, it is natural to choose one that is
frequently seen. Many of the bees that we marked in the Ptn-
sttwvm array were not seen again. Marking trauma may have
driven them off, but they may also have been non-traplining
vagabonds. However, other studies (Thomson, 1996; Thomson
J and Williams N, in preparation) reinforce our conclusions
that Bombus flavifrvns on PensUmon strittus frequently forage
similarly to Bombus Urnariui on Aratia faspida (Thomson,
1988; Thomson et aL, 1982, 1987). The foraging areas are
similar, (about 100 m1), the circuit times are similar (about
10-15 min) and the sharing of plants by many bees is similar.
In both cases, bees make three to four passes through the
array on one foraging trip from the nest. Additionally, we
know that on Aratia, bees gradually move their foraging areas
into areas where floral rewards are higher. It appears that bees
visit a core set of plants on virtually every pass through the
array, but they also occasionally sample other plants. If those
plants prove rewarding, they are more likely to be visited on
a subsequent pass (Thomson et aL, 1982, 1987). We suspect
that bees on Ptnsttwum do something similar (Thomson,
1996).

If so, there is no reason to expect perfect traplining; in-
deed, it would be pathological Rather, traplining probably
presents a special case of the common situation where animaU
need to learn information about their environment and re-
member it for awhile, but also to forget it when it loses cur-
rency (Mangel, 1990; Thomson, 1996). Occasional sampling
is probably highly advantageous in a world where plants
change in value through time, but it will blur the conservative
visitation pattern that must underlie traplining. Therefore, we
stress the need for techniques that establish the reality of that
underlying pattern.

Comparisons of methods

We have proposed several different tests of traplining. Each
of these illuminates a different aspect of potentially repeti-
tious movement patterns among fixed stations. Each can thus
be viewed as a different operational definition of traplining.
Prospective users should select tests, or devise new ones, that
are relevant to the biological situation and compatible with
the data. Here, we consider some of the properties of our tests
that such users should bear in mind.

Asyrnmstry test
The asymmetry test, which was developed to test for direc-
tional migration (Sokal, 1991) is die only one that compares
data to a simple statistical distribution (i.e., binomial expec-
tation). It is readily grasped and shows an important aspect
of nonrandomness in interstation moves, and its application
allows the construction of the trapline skeleton diagrams,
which we find useful. The index derived from this test also
responds to a wider range of (values than the other indices
(Figure 6). The test is rather far from the essence of traplin-
ing, however. It would also be blind to commuting traplining,
in which a bee might go back and forth along a particular
route, ft does not serve to define traplining, but it is a useful
adjunct to other measures.

By expressing sequence data as a transition matrix, we draw
attention to the role of Markov models as possible descriptors
of trapline*. C H. Janson (unpublished manuscript) has ex-

tensively analyzed traplining from a Markovian view, so here
we will cite a few points. For example, perfect traplining of a
subset of plants in an array would result in a nonergodic Mar-
kov chain: in such a <•*»»•". some destinations are never
reached and the effect of the starting position is never dissi-
pated, as happens in the more frequently modeled ergodic
condition. Our analysis of individuality of transitions via con-
tingency able could be seen as a special case or subset of a
Markov analysis; for example, our analysis could be extended
to consider whether bees' departure directions from particu-
lar plants depended not only on the plant of departure (first-
order Markov process) but on the preceding plant as well
(second-order process). Janson (personal communication)
shows that the movements of a monkey troop cannot be de-
scribed a first-order Markov process, which he interprets as
evidence for a cognitive spatial map.

NuUmodds
Aside from the asymmetry test, our measures fall into two cat-
egories. Some compare animal* to animal*, others compare
animaU to null models. Each type has characteristic shortcom-
ings. As mentioned above, random null models are unrealistic
unless we temper pure randomness with additional biological
constraints. If we do add constraints, our choice of constraints
becomes part of die operational definition, and someone who
makes different choices will reach different conclusions about
the strength of traplining. For example, we built in an aver-
sion to retraces, but we considered only one- and two-step
retraces. This decision was based on years of watching bees
on many host plants and acquiring die strong impression that
such short retraces are so rare—so "unnatural" for bumble
bees in general—that we should not permit our null bees to
make them freely. We could have gone further, also constrain-
ing three-step, four-step, and all higher retraces so that they
too would occur as often in our null sequences as in the ob-
served data. Similarly, rather than choosing a destination
plant randomly from the eligible members of a chosen neigh-
bor class, we could have made the null bees more likely to go
to members with more flowers. At some point, however, we
would have to constrained our null sequences that they would
have aM the properties of die observed data. To be useful, a
null model has to fall into a window of credibility: if we use
unconstrained randomness, we will always reject the null, but
the rejection wiH not constitute traplining. If we constrain too
completely, we will never reject the null, and no behavior can
constitute traplining. Anyone who chooses the null model ap-
proach must also choose the constraints and be able to defend
those choices.

With that caveat registered, we suggest that die best prac-
tical index or measure of traplining for our study is that based
on the variances of returns. It uses data fairly efficiently, is
comparatively easy to understand, allows a significance test,
and also produces a comprehensible index of die strength of
traplining. On die other hand, it is somewhat removed from
die ideal definition of traplining in that it does not look di-
rectly at sequence similarity. If sequences are similar, returns
lengths will be similar, but return lengths could conceivably
be similar without much sequence similarity. Furthermore,
the weak performance of significance tests on long sequences
generated with various values of t is a concern.

The technique closest to die ideal definition of traptining
is the comparison of similarity (alignment) of repeated cycles
within sequences. Its only real drawback is a serious •ne, its
dependence on long, continuous observations. Given that -
null sequences must match die observed sequence (they must
start at the tame plant, be of die same length), it is hard to
combine data from different sequences, and only the longest
of our sequences have two or more full cycles. Given that few
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will be easier to observe than bumble bees, this tech-
nique will find little application unless » way is developed to
use shorter cycles, perhaps by some objective paste-together
technique.

Spectral analysis of displacements is a powerful way to
search for periodicities in the bee's spatial position, but it is
more suited for analyzing a few long sequences in depth than
for measuring traplining strength. The product of spectral
analysis (the periodogram) is essentially just a transformation
of the data from the time domain to the frequency Hnmam
It is therefore as complicated as the original data series itself
and does not provide any single parameter that naturally
serves as a summary statistic We recommend spectral analysis
of displacement data u an informative way to examine data,
but it should always be accompanied by drawing maps of the
flight paths, which may be just as informative. It seems to have
little to contribute to the search for a general operational
definition of traplining, and like all of the null model ap-
proaches, it depends on the assumptions built into the null
model.

Comparing bees to each other rather than to "random-
ness" neatly evades the problem of arbitrary assumptions.
However, it skips the most fundamental question, Are bees
repeating sequences? and jumps to what would logically be a
second question, Given that bees show consistent movement
patterns, are their patterns individualistic? This question gives
information about traplining only if we reject the null hy-
pothesis of homogeneity among bees. If we succeed in show-
ing that different bees make consistently different moves at
certain stations, we can consider that as evidence of traplin-
ing: consistent differences between bees cannot arise without
consistency within bees. However, if bees are basically doing
the same thing, we cannot tell whether they are traplining or
not In our case, both contingency tables and the Mantel test
jn^'catr that bees do differ, both in their decision-making at
particular points in the array and in the similarity of their'
sequences. A limitation common to both of these methods is
the requirement that the bees' foraging areas overlap to some
extent

Of these two approaches, the Mantel test seems closer to
the essence of traplining because it examines sequences. On
the other hand, it is a less fatnfKar approach than contingency
tables. Also, although we have not explored the test's behavior
fully, the overall Mantel results seem rather volatile. FJiminat-
ing only a few sequences, perhaps 5% of the total, can change
the matrix correlation from highly significant to insignificant
Until a more systematic sensitivity analysis has been complet-
ed, including an examination of alternative similarity mea-
sures, we would be reluctant to recommend this approach.
Contingency tables seem adequate for testing individuality, al-
though our use of separate tables and Fisher's combined
probabilities test is less elegant than Janson's (1996; unpub-
lished data) approach to the same question using Markov
models.

*^" IiniHrSf*piiff of toff t r n y

In the search for statistical signatures of traplining, we re-
peatedly encounter a requirement for large data sets. The
four focal bees were obviously far from being pure, regular
trapliner*; indeed, several tests support the conclusion that
pink was not traplining. The other bees were irregular
enough that only by compiling many observations could we
find various sorts of repetitive patterns in their movements. It
makes sense that we cannot recognize a trapline as a repeated
pattern unless we have seen an animal traverse it numerous
times during a long slice of time. This leads to a dilemma:
statistically, traplines are a moving target

We know from other studies (Thomson et aL, 1982, 1987)
and from the comparison of blue early with blue late in this
study, that the foraging areas of bumble bees change through
time. This is accomplished by adding some new plants to the
route while deleting others. Rapid trapline drift will mean that
the first sequences in a long data set may resemble the last
ones so weakly that the hypothesis of traplining is rejected,
even though the animal's route has evolved only through
gradual, incremental change. Gradual evolution of this sort is
different from sloppy repetition of a basically fixed cycle, but
our techniques will not make the distinction: both processes
wiD weaken traplining. I£ for example, we had pooled the
early and late data sets for bee blue, several indications that
were significant in each separate data set may have been in-
significant in the whole. This is essentially a stationarity prob-
lem, and we have no tested solution to offer. Given enough
data, one could gauge the problem by ordinating sequences
by the alignment-similarity matrix, then connecting the points
for each bee's sequences in temporal order. If the resulting
traces form small, nonoverlapping clusters, trapline drift
should pose no problem for detecting individuality. If the trac-
es are long, intertwining with others, then stationarity may be

It is also evident that observers should strive to get sequenc-
es that are as long as possible. Although short fragments of
sequences can be useful for analyses based on the transition
matrix, other techniques, such as spectral analyses and align-
ment of cycles within sequences, depend on long records.
These methods will not be useful for animal* that cannot be
followed for long bouts. This brings up another unfortunate
trade-off. Our restricted array was designed to ease observa-
tion. Working in a much larger natural stand, with irregular
plant spacing, would make it harder to maintain continuous
records, as bees are more easily lost on longer flights. On the
other hand, a larger stand would make it much easier for
techniques such as displacement series to distinguish traplin-
ing bees from more random foragers. In an infinite stand, a
non-traplining bee could potentially drift away from its start-
ing point without limit, more like a true random walk (Kareiva
and Shigessada, 1983). In our case, a bee that limited itself to
Ptnsttmon strictiu could drift no farther than a few meters.
Such bees necessarily retrace their steps frequently (Figure 4),
mating it harder to distinguish traplining from constrained
null movement

Using a small array highlights another elusive distinction.
We could imagine a bee that uses the entire array by passing
through it in a repeatable sequence—an indubitable trapliner.
We can also imagine a bee that restricts itself to only half the
array, but within that half shows no more repetition than
would be expected from a null process. (See the blue late data
set. Figure 3.) Both of these bees would show significant trap-
lining according to our tests that compare them to null bees
using the entire array. This does not seem desirable, but there
is no clear way to fix the problem. To satisfy our curiosity, we
reanalyzed the blue late data, using null models in which visits
were allowed only to plants 1-9, 11-15, and 19-21. (We also
purged die observed data of the single visit to plant 27 that
started one sequence.) As expected, the deviation of the ob-
served data from the null models weakened. For the variance
of returns test, die Fisher combined significance level de-
clined from .001 to .025; for the alignment of sub-sequences
test, it remained rnsignifiram at JS < p < .1.

It seems, then, that significant regularity remains within this
data set even when the array is collapsed to include only those
plants that the bee actually frequented. This "fix-up" evades
the crux, however. Why draw the line at plants that are never
visited? Why not further condition the null bee to visit plants
in the same proportion as die observed bee? Because thu
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would eliminate a principal feature of trapliner the freedom
of a bee to move preferentially to tome plants rather than
others. If an observed bee always avoided one particular plant
while visiting those all around it, we would consider that avoid-
ance part of its regular route, part of the selectivity that de-
fines traplining. We would not constrain null bees to avoid it
also. Although this case may seem different from the type of
selectivity shown by blue late, the difference is one of scale
and the distinction is gray rather than black and white. There
is no way to deconfound avoidance of plants from avoidance
of foraging areas as sources of non-randomness. This is an-
other reason why the null model comparisons are arbitrary:
they demand assumptions about the available foraging arena
as well as about movement rules. For this reason, again, the
between-bee comparisons are necessary adjuncts to the null
models.

Overall, no single method provides a complete solution to
the operational definition of traplining. If the goal is to doc-
ument that animal* are showing statistically irgn •"<•")? regu-
larities in their repeated passes through an array of stations,
it is probably best to apply as many methods as possible, with
each test contributing its unique increment to a general di-
agnosis. More often and more usefully, model selection will
be guided by an adaptive analysis of the problem facing the
animal An investigator might ask what sort of repetitive for-
aging patterns one might expect from bees using a particular
tactic or facing a particular spatial problem. Then, one should
select a test that is appropriate to the properties of the data
(e.g., sequence length) and the question. We hope that the
suggestions here provide a starting point.
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