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HETEROGENEITY AMONG FLORAL
VISITORS LEADS TO

DISCORDANCE BETWEEN REMOVAL
AND DEPOSITION OF POLLEN

Paul Wilson' and James D. Thomson'

Flowers are often visited by many species of animals.
These sometimes differ in size, behavior, and other
characteristics that translate into differences in their

! Department of Ecology and Evolution, State University
of New York, Stony Brook, New York 11794 USA.

effectiveness as pollinators (e.g., Schemske and Horvitz
1984, 1988, Herrera 1987, Young 1988). The differ-
ences may be manifest in their effect on reproductive
success either through female or through male function
(Lloyd and Yates 1982, Bell 1985, Campbell 1989,
Snow 1989). A number of recent studies have mea-
sured pollen removal as a component of male function
(Snow and Roubik 1987, Cruzan et al. 1988, Galen
and Stanton 1989, Harder and Thomson 1989, Thom-
son and Thomson 1989, Wolfe and Barrett 1989,
Harder 1990, Murcia 1990, Young and Stanton 1990);
however, high pollen removal need not result in high
subsequent deposition of the removed pollen or in high
success at siring seeds. Here we provide an example in
which pollen-collecting bees remove more pollen but
deposit less of it than nectar-collecting bees. The pollen
collectors are antagonists with regard to the male re-
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Bombus were collecting nectar as shown in right panel, Apis were collecting pollen as shown in left panel, and Dialictus were
collecting pollen. Pollen collectors removed more pollen than Bombus and deposited less. For pollen left, there were significant
(P < .05) differences between genera in each compared pair except Apis vs. Dialictus, which comparison was marginally
significant (P < .1; no transformation used). For pollen deposited, there were significant (P < .05) differences between genera
in each pair (rank transformation used). In both cases, these were least-significant-difference comparisons; a separate Type [
error was risked for each comparison. Bars are means + 1 sg; x’s are medians; numbers are sample sizes.

productive success of the plants, at least relative to the
more beneficent nectar collectors. Our results under-
score the need to study pollen deposition in conjunc-
tion with pollen removal.

Materials

We studied pollen movement in Impatiens capensis
Meerb. (jewelweed) at the Weld Preserve of the Nature
Conservancy on Long Island, New York (40°53" N,
73°12" W). This annual plant produces many protan-
drous flowers. The male phase lasts 43.8 = 1.91 h (X
+ 1 sg, N = 30), until the androecium falls off, exposing
the gynoecium, whose stigma up to that point could
not have received any pollen. The female phase lasts
32.3 = 2.29 h (N = 31) (cf. Schemske 1978). The
gynoecium typically contains five ovules, and seed set
is high. The perianth consists of two small sepals, an
upturned banner-like petal, two landing-platform pet-
als, and a large vestibular sepal that narrows into a
recurved nectar spur. The androecium (in male phase)
or gynoecium (in female phase) extends down from the
roof of the vestibule at the front.

Here we consider two patches of flowers— Patches 1
and 2—and the visitors at those patches. Apis mellifera
L. at these sites (though not at others) actively collected
pollen, using their mouth parts to pick at the androe-

cium while hanging upside down (see Fig. 1). Dialictus
rohweri (Ellis) collected pollen upside down with their
legs, and sometimes would subsequently crawl into the
vestibule to drink nectar. Bombus impatiens Cresson
and Bombus vagans Smith collected nectar, crawling
into the vestibule right side up to drink from the spur,
and, in the process, passively brushing the androecium
or gynoecium against the backs of their thoraces (see
Fig. 1). Patch 1, studied during late August 1989, had
a mixed suite of visitors—mostly 4pis and Dialictus
with a few Bombus. At arbitrarily designated flowers
we observed 85 visits by pollen collectors (67%) and
42 visits by nectar collectors (33%). Patch 2, studied
during early September 1989, was visited almost en-
tirely by Bombus, mostly B. impatiens. At designated
flowers we observed 5 visits by pollen collectors (6%)
and 78 visits by nectar collectors (94%). Overall visi-
tation rates were similar at the two populations. Some
visitors also or alternatively robbed flowers by biting
into the spur to get at the nectar (Zimmerman and
Cook 1985), but such visits are not germane to our
results. The two patches were =~0.5 km apart.

Methods

We labeled flowers with a small piece of tape on the
pedicel and covered them with glassine envelopes. Two
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used). These were Model I ANOVAs. We do not imply that we have replicated the type of patch (mixed-visitors vs. Bombus),
merely that the two patches were different. The unreplicated difference is consistent with the difference in the composition
of the visitor suites and the effects of individual visits shown in Fig. 1. Bars are means = 1 sg; x’s are medians; numbers

are sample sizes.

types of flowers were involved: buds that would open
in the bags and become virgin male-phase flowers, and
emasculated male-phase flowers that in the bags would
become receptive virgin female-phase flowers. The next
day flowers were unbagged, and animals were allowed
to visit them. For one data set, a single visit was allowed
to each flower and the visitor’s species and behaviors
were recorded. This allowed us to quantify, for different
visitors, the single-visit components of pollen transfer.
Fora second data set, a number of flowers were exposed
for a fixed interval during which there occurred an
unrecorded number of visits—flowers were exposed for
0, 1, 3, or 7 h on 20 August in Patch 1 and on 9
September in Patch 2. Thus, we examined the net ef-
fects of multiple visits by different pollinator faunas.
For both studies, we measured two dependent vari-
ables: pollen not removed from the androecia of male-
phase flowers, and pollen deposited on the stigmas of
female-phase flowers. To measure pollen not removed,
the androecium was put in a microcentrifuge tube, air-
dried, preserved in 70% ethanol, later sonicated for 30
min to separate grains, diluted with 1% NaCl to 200
mL, and subsamples were counted with a Coulter elec-
tronic particle counter (Harder et al. 1985). To deter-
mine pollen deposited, we squashed the stigma in
warmed glycerine jelly tinted with basic fuchsin, and

later counted the grains under a compound microscope
(Beattie 1971). All counts were done in random order.

Results

Single visits by nectar-collecting Bombus and by pol-
len-collecting Apis or Dialictus had significantly differ-
ent consequences for pollen transfer (Fig. 1). Pollen
collectors removed almost twice as much pollen as
Bombus when visiting a virgin male-phase flower, but
deposited an order of magnitude less on stigmas of
virgin female-phase flowers. Moreover, Apis and Dia-
lictus appeared to avoid female-phase flowers, in con-
trast to Bombus (also see Bell et al. 1984), so the pollen
wastage by pollen collectors was probably even greater
than the per-visit data indicate. We also allowed up to
four visits by Bombus and found that the amount of
pollen in androecia was only depleted to about 180 000
grains, well above the 100 000 grains left after one Apis
visit (data not shown, least significant difference mul-
tiple comparisons, P < .001).

The net amount of pollen transferred at the two sites
differed strikingly, significantly (Fig. 2), and in a fash-
ion consistent with the results of individual visits and
the difference in the visitor faunas between the two
sites. In Patch 1 androecia were more thoroughly emp-
tied of pollen than in Patch 2, being left with <50 000



grains as opposed to >150000. And, ironically, stig-
mas in Patch 1 received much less pollen than in Patch
2, only a few grains vs. several hundred.

Discussion

The difference between our two sites in the types of
animals visiting flowers translated into a marked con-
trast in the relationship between pollen removal and
pollen deposition. Net pollen transfer was in accor-
dance with the composition of the two visitor suites
and the single-visit transfer components of the different
bees. In Patch 1, where pollen collectors were domi-
nant, more pollen was removed and less delivered than
in Patch 2, where nectar-collecting Bombus was dom-
inant. Pollen deposition in Patch 1 was, if anything,
lower than might have been expected, given the pres-
ence of a few Bombus.

In the Impatiens system there is no necessary rela-
tionship between pollen removal and deposition. The
simplest expectation —that high removal leads to high
subsequent deposition (and high paternity)—is surely
incorrect. Because pollen collectors remove lots of pol-
len but deposit very little of it, while Bombus removes
less but deposits more, one might even expect a neg-
ative association between removal and subsequent de-
position. This would be true if flowers were only visited
once. Because flowers are visited many times, the sit-
uation is complicated by an effect of the sequence of
visitors. A flower visited first by a Bombus and later
by an Apis ought to have high removal and many of
its grains transferred, whereas a flower visited first by
an Apis and later by a Bombus ought to have high
removal but few of its grains transferred. Across flow-
ers, therefore, the amount of pollen removed might be
only weakly (and negatively) correlated with the amount
of pollen transferred to stigmas. Male reproductive suc-
cess is determined by the transfer characteristics—both
removal and deposition— of all the visitors. Pollen re-
moval by itself should not be used as an estimator of
paternal fitness when there is heterogeneity among flo-
ral visitors.

When Bombus is present, Apis and Dialictus are an-
tagonists rather than mutualists of Impatiens. They
effect very little pollen transfer, and flowers visited by
these pollen collectors are prevented from having their
pollen transported by Bombus. Our results provide a
counterexample to the generalization that pollen-col-
lecting bees are more effective pollinators than nectar-
collecting bees (Free 1970: 84-87).
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CANOPY STEREOGEOMETRY OF
NON-GAPS IN TROPICAL FORESTS—
A COMMENT

David A. Publicover' and Kristiina A. Vogt'

Lieberman et al. (1989) present an interesting and
novel way of looking at the light environment within
a forest. It appears to be an especially useful technique
for describing the niche of different species within that
environment (as the authors have done for Cecropia
obtusifolia), and for measuring changes in the light en-
vironment over time. However, they dismiss tradi-
tional methods based on the spatial delineation of gaps,
and assume that light is the only factor affecting the
growth and regeneration of tree species.

The following discussion will introduce other factors
that need to be considered when utilizing the canopy
stereogeometry method presented by Lieberman et al.
(1989). A simulation model of different-sized gaps will
be used to present the arguments for not shifting gap
studies to an individual tree level focus.

The Methodology

The following comments on their methodology are
being presented with the intent of improving the use-
fulness and stimulating further development of the
technique. Lieberman et al. (1989) used 10 m as the
limiting distance for inclusion of trees in the canopy-
closure index (G) calculation. If used across a wide
range of forests, however, this distance should vary
depending on the height of the canopy. Defining a lim-
iting distance based on a certain percentage of canopy
height would allow the calculation to be consistently
applied to forests of different statures. Ideally, the cal-

! Program in Belowground Ecology, School of Forestry and
Environmental Studies, Yale University, New Haven, Con-
necticut 06511 USA.

culation should be made in such a way that a canopy-
closure index of zero indicates that the sample point
receives full sunlight for an ecologically meaningful
period.

It may be more appropriate to use a limiting angle,
rather than horizontal distance, for determining which
trees should be included in the calculation. A tall tree
10.1 m from the sample point would have a greater
shading effect than a shorter tree 9.9 m away, but would
not be included under the present method. The use of
a limiting angle would correct this problem. Further-
more, the use of a circular radius of inclusion is less
appropriate in temperate and boreal zones, where
shading is more directional. In such forests, it may be
better to include only those trees to the south of the
sample point, or to weight the trees according to their
direction from the point.

Finally, shading from adjacent trees affects entirc
crowns, not just the highest point. A tree growing in
an open field receives more sun than one that is closely
crowded by other trees of equal height. Yet both trees
would have a canopy-closure index of zero. Perhaps it
would be better to calculate the average value of several
points throughout the height of the crown of the sample
tree. A realistic measure of the light environment faced
by individual trees would require having more specific
data on crown size and foliage distribution by tree
species, and how these parameters vary with tree size
and age and the changing light environment.

Distinguishing Gaps from Non-Gaps

The authors suggest moving to a tree-based rather
than a gap-based approach to forest dynamics research
because of the difficulty of defining closed forest (or
“null gap”) distinct from gaps. They state that the can-
opy-closure indices calculated by moving a ““unit tree”
along points on a grid are normally distributed, while
the existence of distinct gaps should lead to a bimodal
distribution.

However, this unimodal distribution is the result of
the relatively small area covered by gaps. Data from
Sanford et al. (1986) indicate that only = 6% of the
area of the La Selva forest in Costa Rica is in gaps >40
m?. The distribution of values for points in these gaps
will be different from those that fall in closed forest,
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