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abstract: Bayesian foraging in patchy environments requires that
foragers have information about the distribution of resources among
patches (prior information), either set by natural selection or learned
from past experience. We test the hypothesis that bumblebee foragers
can rapidly learn prior information from past experience in two very
different experimental environments. In the high-variance environ-
ment (patches of low and high quality), stochastic optimality models
predicted that finding rewards should sometimes sharply increase an
optimal forager’s tendency to stay in a patch (an incremental re-
sponse), whereas in the uniform environment, finding rewards
should always decrease the tendency to stay (a decremental response).
We use Cox regression models to show that, in a matter of hours,
bees learned to match both predicted responses, resulting in a reward
intake rate that averaged 80% of the predicted maximum. Following
training in either environment, bees’ adaptive behavior carried over
to a common test environment, thus confirming the influence of
memorized prior information. Although Bayesian foraging by learn-
ing is often presumed, this study is the first to clearly isolate the
adaptive use of a learned prior expectation. More generally, it high-
lights the remarkable adaptive plasticity of an important generalist
pollinator and agent of selection.

Keywords: Bayesian updating, learning, marginal value theorem, op-
timal foraging, patch-use model.

Introduction

The history of foraging theory related to patch use shifts
from considering when a forager should optimally leave
a patch of resources (e.g., Charnov 1976) to considering
how the forager should decide when to leave (reviewed by
McNamara et al. [2006]). This shift reflects an input of
ecological realism to the patch-use problem; in particular,
because food items are often encountered stochastically
and patches vary in quality, a forager must use incomplete
information to decide when a patch should be abandoned.
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The optimal decision rule, which tells a forager how to
infer future patch quality on the basis of its current ex-
perience in a patch, can be calculated with Bayes’s theorem
by an investigator who knows the distribution of food
items among patches in the environment (the prior dis-
tribution; e.g., Oaten 1977; McNamara 1982; Green 2006).
In order to approximate an optimal foraging rule, animals
must similarly have some knowledge of the prior distri-
bution. They might learn prior information from their past
experience; however, if the distribution of food items is
stable over time, that information could instead be hard-
wired by natural selection, resulting in animals that behave
as if they know the prior distribution for their environment
(McNamara et al. 2006; Pierre and Green 2008).

Examples of patch-leaving behavior from both verte-
brates (reviewed by Valone [2006]) and invertebrates (see
Pierre and Green 2008) can be interpreted as Bayesian-
like, yet the extent to which prior knowledge of resource
distributions is learned or hardwired remains unclear. Even
the most impressive examples of Bayesian foraging by birds
do not necessarily imply a special learning ability. In many
cases, birds encountered an unmodified distribution of
food items in nature (e.g., Alonso et al. 1995) or an ex-
perimental distribution that might reflect the type of an-
cestral environment to which the animals are already
adapted (e.g., the negative-binomial distribution studied
by Van Gils et al. [2003] or the empty/full distributions
used by Lima [1984]; see Ydenberg 1998). Furthermore,
the birds used in many experimental studies were trained
to a particular food distribution for weeks. If learning did
take place during this time, it is not clear how long it took
for prior knowledge to be replaced by new information.

We hypothesized that an invertebrate forager, the bum-
blebee, should have the capacity for Bayesian-like foraging
and the ability to rapidly learn prior information from
very different environment types. As generalists, bumble-
bees have an evolutionary history of encountering a di-
versity of nectar resources that can vary greatly among
plants of the same species and among flowers within a
single plant (Goulson 2003, p. 73 and references therein).
Furthermore, the extent of variation among plants will
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differ among species that bees visit in a lifetime and may
also fluctuate within a population as a result of daily pat-
terns of reward depletion and renewal (e.g., Pleasants and
Zimmerman 1979; Thomson 1988). It is exactly in this
type of environment that natural selection would favor the
ability to learn about the distribution of resources among
patches.

When patches are consistently rewarding and of the
same quality, bumblebees retain prior information about
the mean quality of the environment and adjust their
patch-leaving rules accordingly (Biernaskie and Gegear
2007). In contrast, the leaving rules that bees use on plants
with variable rewards are often interpreted as fixed rules
of thumb (e.g., a threshold nectar volume or number of
empty flowers; Pyke 1978; Hodges 1985) or as rules that
otherwise depend only on recent success in a patch (e.g.,
Kadmon and Shmida 1992). Yet given the variance in re-
wards that can be found within and among patches, bees
that follow a fixed departure rule would often leave good
patches too soon or stay too long in poor patches. They
could avoid such errors by incorporating information
about the distribution of rewards in their past experience.

Our study rigorously tests whether bumblebees can
learn to adapt to novel environments by adjusting their
patch-leaving rules in a Bayesian-like manner. The exper-
iments involve training naive foragers (for hours, rather
than weeks) in either a uniform environment (all patches
having the same number of rewards) or a high-variance
(HV) environment (patches of either low or high quality)
and then observing each forager in a common test envi-
ronment. This design is unique in that it isolates the effect
of memorized prior information on foraging behavior in
the common environment and thus explicitly tests the
central feature of Bayesian foraging via learning (McNa-
mara et al. 2006; Valone 2006). We also take advantage of
recent theoretical developments (Olsson and Holmgren
1998; Green 2006) to calculate the optimal patch-leaving
rule in each training environment. Bumblebees are cer-
tainly not perfect Bayesian decision makers, but optimality
models allow us to compare their actual reward intake
rates to the expected intake rate of an optimal forager. As
a compliment to the optimal foraging models, we use a
statistical model (extensions of Cox’s proportional hazards
model; Therneau and Grambsch 2000) to estimate bees’
tendency to remain in a patch as a function of information
gained by sampling the patch. In this way, the deterministic
optimality predictions can be compared with a more re-
alistic, proximate model of animal behavior (Wajnberg
2006; Pierre and Green 2008). We show a strong qualitative
match between the two models, which, together with evi-
dence from the test environment, strongly suggests the use
of learned prior information in an adaptive, Bayesian-like
way.

Material and Methods

Experimental Methods

Worker bumblebees (Bombus impatiens Cresson; supplied
as eggs and larvae by Biobest Biological Systems, Leam-
ington, ON) were trained to collect a 30% sucrose solution
(herein “nectar”) from artificial flowers within a large
screened enclosure ( ). Bees entered3.4 m # 2.0 m # 4.6 m
the enclosure through a gated tunnel connected to their
nest box. The flowers were clear 1.5-mL polypropylene
microcentrifuge tubes with the cap removed and a circular
collar (6.5-cm diameter) of blue cardboard fixed around
the tube’s entrance (Gegear and Laverty 2005). To train
for initial flower recognition, four to five filled flowers
were presented at a single location within the enclosure.
Worker bees from the colony eventually found and foraged
on these flowers to sustain the colony when experiments
were not in progress. Active foragers were painted with a
small unique marking for identification.

For all training and tests, 12 flowers were grouped into
rectangular patches ( ) spaced 7.5 cm apart on pieces4 # 3
of rigid poster board. The environment consisted of 10
patches, arranged in two rows of five and spaced 1 m apart.
In total, 50 flowers in the environment each contained 5
mL of nectar, and the remaining 70 flowers contained 5
mL of water (details of the distribution of rewards are given
below). During training and tests, only a single marked
forager was allowed to make repeated foraging bouts to
the environment, and during foraging, we controlled bees’
movements by covering all but two patches: the one being
harvested and the (unvisited) adjacent patch. This ensured
that bees’ interpatch travel distance was consistent, that
patches were never revisited, and that bees experienced the
entire distribution of patch types that we intended. In-
dividuals were trained on a particular distribution of re-
wards for at least 45 patch visits (usually 2–3 h) consisting
of multiple foraging bouts (lengths of bouts ranged from
four to 10 patch visits). A bout ended when the bee re-
turned to the colony to unload its harvest, and during this
interruption, we refilled all rewarding flowers that had
been visited in the environment (after checking that visited
flowers were in fact emptied). Hence, a fully replenished
environment was always available at the start of each new
foraging bout. We felt that 45 patch visits would be suf-
ficient to test whether bees updated their pretraining prior
distribution, presumably set mainly by evolutionary his-
tory, with new information about the distribution of re-
wards in the following training environments.

Uniform treatment. Each patch contained five rewarding
flowers in a random spatial arrangement. After every sec-
ond foraging bout, the position of patches in the envi-
ronment was haphazardly shuffled, and after every 15
patch visits (or whenever the bout ended thereafter), a
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new set of patches with a new random arrangement of
rewards was presented. We did this to minimize bees’ abil-
ity to memorize the location of rewarding flowers but also
to minimize the evaporation of rewards and the influence
of floral scent marks.

High-variance treatment. Half of the patches contained
a single reward, and half contained nine rewards (all ran-
domly distributed). The sequence of patch types in the
environment was randomized. Patches were shuffled after
every second bout, but in this case, patches were moved
to a new randomized sequence. Also as above, a new set
of patches was presented after every 15 patch visits.

Once the threshold of 45 training visits was exceeded
(excluding the final patch of each bout), we replaced all
patches with the test environment, and the test began on
the next foraging bout. All patches in the test environment
contained five rewarding flowers in a common spatial ar-
rangement. Bees from both training environments expe-
rienced the common arrangement of rewards and the same
sequence of patches within the test environment. The test
lasted for only 10 patch visits so that the observed behavior
in the test could reflect any learned information from prior
training; in this way, we hoped to minimize the amount
of new information that might be learned within the test
itself (this is particularly relevant for HV-trained [HV-T]
bees, given that the HV environment was very different
from the test environment).

Individual bees went through only one sequence of
training (uniform or HV) and test. In total, 20 bees (10
of each training type) from three different colonies were
observed. We chose newly emerged workers that were ac-
tive foragers at the time that trials were to begin. Rather
than assigning treatments to bees in a random order, we
alternated training types in order to distribute them
equally among colonies. The behavior of each bee during
its last 15 patch visits of training, herein “late training,”
and all 10 patch visits in the test (as always, excluding the
last patch visit of a bout) were videotaped. For the last
three bees assigned to each treatment, we also recorded
15 patch visits of early training, which began after a bee’s
initial 10 patch visits (ensuring that it had learned to ef-
ficiently handle flowers and travel between patches). One
observer used JWatcher, version 6.1 (Blumstein and Daniel
2007), to measure the number of rewards found, inter-
reward search times, giving-up times (time from obtaining
the last reward or entering the patch, whichever was more
recent, to leaving), and travel times among patches.

Setup and Parameterization of the
Optimal Foraging Model

The model environment corresponds to our experimental
training environments but consists of an infinite series of

patches. Before a patch is visited, y of 12 flowers contain
a nectar reward, and the distribution of y among patches
is the model analogue of our experimental manipulation.
Each patch visited in the HV environment has probability
1/2 of being either a low-quality ( ) or a high-qualityy p 1
( ) patch. Each patch in the uniform environmenty p 9
initially has five rewards ( ) with probability 1. Thesey p 5
are the prior distributions that enter into the optimal for-
aging model below. Bees are assumed to know the appro-
priate distribution with certainty by late training.

A foraging strategy divides bees’ time into searching for
rewards on a patch or traveling among patches. Real bees
also had a nonzero handling time associated with nectar
consumption, but handling time has no effect on the
choice of an optimal strategy (Oaten 1977). Interpatch
travel time is a random variable with mean t. Interreward
search times on patches are assumed to be exponentially
distributed random variables with rate parameter a(y �

, where a is a constant called the searching efficiencyx)
(sensu Murdoch and Oaten 1975) and x is the number of
rewards already found in the patch. Under this exponential
distribution, is the mean interreward time.1/a(y � x)

Our foraging model thus requires an estimate of three
parameters: the average travel time between patches, t,
and the average searching efficiency in HV and uniform
environments. Average travel time, t, was estimated as the
average measured time for bees to travel between patches.
Searching-efficiency parameters were estimated by a sur-
vival analysis that assumed that interreward times were
exponentially distributed with rate . We graphi-a(y � x)
cally checked that interreward times were indeed approx-
imately exponentially distributed (app. A in the online
edition of the American Naturalist). For each training en-
vironment, a was estimated by maximum likelihood. Es-
timation of a requires that all giving-up times be treated
as censored interreward times (the true time is at least as
long, but we cannot know how much longer). We handled
these censored observations following Haccou and Meelis
(1992, box 4.16).

Optimal Foraging: The Potential Value Model

The optimal foraging model is a slightly modified version
of Green’s (2006) continuous-time, random-search model.
Following other authors, we call it the potential value
model, which finds a rule that is known to maximize en-
ergy intake from any particular resource distribution (e.g.,
Olsson and Holmgren 2000). Here, we give an intuitive
account of the model and reserve mathematical details for
appendix B in the online edition of the American Natural-
ist.

Potential value measures patch quality as the expected
number of rewards that a forager will obtain from the
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remainder of the current patch visit divided by the ex-
pected amount of time spent searching the remainder of
the patch. Notice that potential value depends on how the
forager decides to leave in the future, a unique problem
that requires working backward through time with dy-
namic programming (Mangel and Clark 1989). The model
assumes that foragers leave a patch when potential value
falls below a threshold, C. Each choice of C leads to a
long-term intake rate,

E(G)
R p , (1)

E(S) � t

where E(G) is the total number of rewards that a forager
following rule C expects to find in a patch and E(S) is the
total time that such a forager expects to spend searching
a patch. It can be shown that the threshold rule that max-
imizes the reward intake rate in a particular environment,

( or uniform), is equal to , the maximum∗ ∗C i p HV Ri i

long-term intake rate for environment i (Green 2006). The
optimal thresholds for our parameterized models are given
in figure 1A and 1B (dashed lines).

The potential value rule optimally combines current
patch information (the number of rewards found and the
total time spent searching) with prior knowledge of the
resource distribution. In this way, rewards found within a
given amount of time can give an optimal forager infor-
mation about the quality of the patch being exploited and,
in some cases, information about the number of rewards
remaining. With prior knowledge of the HV environment,
an optimal forager is partially informed (uncertain) of
patch quality only when finding fewer than two rewards
(consistent with being on either a high-quality or a low-
quality patch). If no rewards are found, potential value
quickly declines to the leaving threshold (fig. 1A). Finding
one reward, however, indicates the possibility of being in
a high-quality patch, and finding a second reward indicates
a high-quality patch with certainty; in both of these cases,
potential value sharply increases upon finding a reward
and so should bees’ tendency to stay in the patch (an
incremental response; Wagge 1979). After finding two re-
wards in the HV environment (becoming fully informed
and knowing that seven rewards remain), potential value
varies only with the number of rewards found (but not
with time): each future reward suddenly reduces the po-
tential value (tendency to stay; a decremental response;
Driessen et al. 1995). Notice that uniform-trained (U-T)
optimal foragers are always fully informed and should be-
have as if they know that all patches initially contain five
rewards (fig. 1B). As above, each reward found indicates
that the patch is closer to being empty.

Statistical Model of Behavior: Cox’s Proportional Hazards

The potential value model is a useful tool for identifying
optimal behavior but is less useful for describing the actual
behavior of foraging animals. In a given context (number
of rewards found and time spent searching), the potential
value model predicts that bees with common prior infor-
mation will behave in exactly the same manner. Hence,
optimal behavior is inflexible because it is fully determined
by optimal use of prior information. However, we expected
(and indeed observed) that even a single bee in identical
contexts would exhibit behavioral variation. A more flex-
ible statistical model that makes no assumptions about
optimality or the effect of prior information is required
to infer bees’ actual tendency to stay on a patch. For this
purpose, we used a version of Cox’s proportional hazards
model (following, e.g., Haccou et al. 1991; Wajnberg et al.
1999). Our strategy was to assess the degree of similarity
between the potential value model, which is optimized to
experimental reward distributions, and the flexible Cox
model, which we inferred from experimental data. If the
fitted Cox model were to match the potential value model
(as depicted in fig. 1), this would imply that bees used
prior information to adaptively adjust their patch-leaving
tendencies (i.e., that their behavior is Bayesian-like).

Our Cox model shares an important feature with the
potential value model that allows the inference of Bayes-
ian-like foraging: both models assume that bees’ tendency
to stay in the current patch is a function of the time spent
searching the patch, t, and the number of rewards, x(t),
obtained by time t. Potential value is itself a measure of
bees’ tendency to stay in a patch; in the Cox model, the
analogous measure is given by the reciprocal of the so-
called hazard. In survival analyses of patch residence time
(e.g., Wajnberg et al. 1999), the hazard function is the
probability density that a foraging animal will leave its
current patch in the next instant. The decision to leave a
patch under the Cox model is thus a random event that
becomes more or less likely depending on bees’ experience
in the patch (i.e., on t and x(t)). It follows that, unlike
the potential value model, the Cox model does not predict
a sharp leaving threshold.

The hazard function was modeled as

h(t, x(t)) p h (t) exp (�b ), (2)0 x(t)

where bi ( ) is a coefficient measuring the effecti p 0, … , 9
of finding the i th reward on the hazard and is theh (t)0

so-called baseline hazard function, which does not depend
on the number of rewards obtained. The number of re-
wards obtained, x(t), was treated as a time-varying cate-
gorical factor (see Wajnberg 2006). We set to treatb p 00

zero rewards as the reference category, meaning that the



Figure 1: Predicted patch-use behavior of high-variance-trained (A, C, E) and uniform-trained (B, D, F) bees. A–D measure bees’ tendency to stay
in a patch (Y-axis) as a function of time spent searching the patch (X-axis) and the number of rewards found (numbers associated with each solid
thin line) under the potential value model (A, B) and a Cox proportional hazards model (C, D). Bold thick lines represent changes in the tendency
to stay during a hypothetical patch visit, where the times at which rewards are found (arrows) are the mean times to finding x rewards measured
in the late training stage of our experiments. In A and B, strictly optimal foragers leave the patch when their potential value (i.e., tendency to stay)
falls below the threshold value, or , respectively (dashed lines). In the Cox model, bees’ decision to leave is a random event with a likelihood∗ ∗C CHV U

(i.e., hazard function) that depends on x and t. Hence, the reciprocal hazard (Y-axis; C, D) measures bees’ tendency to stay, and it should mimic
the tendencies in A and B (as shown) if bees approximate the optimal rule. E and F give the qualitative pattern in estimated Cox model coefficients
that we expect to measure if bees do in fact approximate optimal behavior (these predictions correspond to the data in fig. 2). Each coefficient (Y-
axis) gives a measure of the increased tendency to stay in a patch upon finding x rewards (X-axis).
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hazard for the zero-rewards context is given by the baseline
hazard function. Coefficients greater than (less than) 0
indicate an increased (decreased) tendency to stay in a
patch, relative to the zero-rewards category. For each of
the four data sets, HV training and test and uniform train-
ing and test, one categorical-predictor model was fitted.

We used the potential values of Bayesian foragers (fig.
1A, 1B) to derive qualitative predictions for the reciprocal
hazard functions of Bayesian-like foragers (fig. 1C, 1D).
Both models predict an incremental response for HV-T
bees that find a first and second reward and a decremental
response for U-T bees and for HV-T bees in fully informed
contexts. Figure 1E and 1F translates the predicted ad-
justments to the reciprocal hazard function in HV and
uniform environments, respectively, to the predicted pat-
tern in the b coefficients as rewards are obtained. HV-T
bees’ coefficients are predicted to increase upon finding
the first two rewards (an initial incremental response) and
then decrease as more rewards are found (a subsequent
decremental response), whereas U-T bees’ coefficients al-
ways decrease as more rewards are found (decremental
response). This pattern of b coefficients is required for
qualitative agreement between the Cox model and the po-
tential value model, and it is our primary test of Bayesian-
like foraging.

We also fitted Cox models that treated the number of
rewards as a continuous predictor:

h(t, x(t)) p h (t) exp (�bx(t)), (3)0

where b is a single slope coefficient. In this case, one model
was fitted to each of the following six data sets: partially
informed HV-T bees (zero to two rewards obtained) in
(1) training and (2) test, fully informed HV-T bees (two
to nine rewards obtained) in (3) training and (4) test, and
U-T bees in (5) training and (6) test. For the uniform and
fully informed HV models, we expected negative slopes (a
consistent decremental response to each reward), whereas
for partially informed models, we expected positive slopes
(see fig. 1E, 1F).

We used the coxph function in the R survival package
to fit the 10 Cox models. Data were arranged in the count-
ing process formulation of survival times, which allows
coxph to fit models with time-varying covariates (follow-
ing Therneau and Grambsch 2000). To account for re-
peated measures on each bee, we used the cluster function,
which implements the robust sandwich variance estimator,
as recommended by Therneau and Grambsch (2000). We
checked for proportionality of the hazard functions among
reward categories, an important assumption of the Cox
model, using the R cox.zph function, which implements
the testing procedure of Grambsch and Therneau (1994).
For all models, we failed to reject the null hypothesis that

the hazards were proportional (all ), indicating thatP 1 .05
our modeling approach is appropriate. Wald tests were
used to assess the overall significance of each model.

Results

Predicted Behavior in the Training Environment

Prediction 1. HV-T bees that find a first and second reward
should show an incremental response (positive b coeffi-
cients) but all subsequent rewards should decrease their
tendency to stay in the patch (fig. 1E, 1F). Each reward
found by a U-T bee should elicit a decremental response
(giving increasingly negative b coefficients).

Figure 2A and 2B shows the estimated b coefficients for
HV-T and U-T bees. These figures resemble fairly closely
the predictions in figure 1E and 1F, indicating that bees’
behavior at the end of training approximated the predic-
tions of our optimal foraging model. One notable excep-
tion is that HV-T bees tended to stay longer than predicted,
after exhausting patches with nine rewards (the confidence
interval for b9 does not overlap 0; fig. 2A). Because of this
exception, we could not detect a significant decremental
response of HV-T bees in the fully informed state, using
the continuous-predictor model.

Prediction 2. Once in a fully informed state, the potential
value model predicts a sharp leaving threshold based on
the number of rewards obtained (a fixed number rule).
The critical number of rewards is six and three for HV-T
and U-T bees, respectively (see the hypothetical patch visits
in fig. 1A, 1B).

There was a large degree of variation in the number of
rewards obtained, indicating that bumblebees certainly did
not follow a sharp threshold. However, the mean behav-
iors—6.2 rewards obtained (95% confidence interval: 5.7,
7.7; bees) by HV-T bees on high-quality patchesn p 10
and 3.5 rewards obtained (3.3, 3.7; ) by U-T bees—n p 10
were very close to the optimal values.

Prediction 3. The predicted long-term reward intake rate
of an optimal forager (R∗) in our HV and uniform en-
vironments was 0.21 and 0.23 rewards/s, respectively (fig.
1A, 1B; recall that ).∗ ∗C p Ri i

HV-T bees in late training achieved a mean long-term
intake rate of 0.16 rewards/s (0.14, 0.18; bees), orn p 10
78% of the rate of an optimal forager. U-T bees achieved
a rate of 0.19 rewards/s (0.16, 0.21; ), or 82% ofn p 10
the maximum rate. For comparison, we considered a hy-
pothetical naive strategy of searching each patch for a fixed
amount of time, such that the probability of finding every
reward would be at least 0.95. The intake rate achieved by
this strategy would be only 26% and 35% of the maximum
rate in the HV and uniform environments, respectively.

To test whether bees’ foraging success in late training
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Figure 2: Fitted Cox model coefficients (Y-axes) versus number of rewards obtained (X-axis) by high-variance-trained (HV-T; A, C) and uniform-
trained (U-T; B, D) bees in the late training (A, B) and test (C, D) environments. Points with error bars (95% confidence intervals) show fits to
the models when x is treated as a categorical factor (there is no error at because this category was used as the baseline). Three of fourx p 0
categorical-predictor models were significantly different from a model in which all coefficients were 0 (HV-training model [A], ,Wald p 1,878

, ; U-training model [B], , , ; U-test model [D], , , ), and the model forP ! .0001 df p 9 Wald p 76.5 P ! .0001 df p 5 Wald p 21.3 P ! .0008 df p 5
the HV test (C) was very nearly significant ( , ). Slopes of the lines are given by the significant b coefficients in the continuous-Wald p 10.8 P p .0544
predictor models (they are not least squares fits to the coefficients estimated under the categorical predictor models). Three of six models were
significant (partially informed HV-training model [A], , , ; U-training model [B], , , ;Wald p 11.2 P p .0008 df p 1 Wald p 28.7 P ! .0001 df p 1
U-test model [D], , , ). In general, HV-T bees show an increased tendency to stay on finding the first rewards in aWald p 7.33 P p .0068 df p 1
patch (A, C), whereas U-T bees show a decreased tendency to stay as each reward is found (B, D).

was due to learning, we also measured the intake rate of
the individuals observed during early training. The intake
rate of these six bees in early training was significantly
lower, on average, than their rate at the end of training
(mean difference: �0.044 rewards/s [�0.083, �0.0050];
paired t-test, , ). Another remarkablet p 2.90 P p .035

contrast between early and late training was the difference
in time spent searching an exhausted (fully emptied) patch
before giving up. By the end of training, U-T bees in
particular had much shorter giving-up times than U-T
bees during early training (fig. 3; estimated mean in early
training: 14.4 s [7.6, 21.1]; bees; estimated meann p 3
in late training: 4.4 s [2.8, 6.0]; bees).n p 10

Patch-Leaving Decisions in the Test Environment

Some differences in the behavior of U-T and HV-T bees
in the training environments are confounded with the dis-

tribution of rewards in those environments. For example,
HV-T bees were much more likely than U-T bees to aban-
don a patch without finding rewards, as predicted by the
potential value model. However, this difference in behavior
may not reflect a difference in decision making. It is pos-
sible that all bees followed a fixed giving-up time threshold
that was simply reached much sooner on low-quality
patches in the HV environment than it was in the uniform
environment (where rewards were relatively easy to find).
The purpose of the test environment, then, is to compare
patch-leaving behaviors on a common background. Any
differences between HV-T and U-T bees in the test en-
vironment must be due to decisions based on alternative
prior information learned during training.

Given the same current information about patch quality
in the test environment (number of rewards found), HV-
T and U-T bees did indeed show very different tendencies
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Figure 3: Box plots of observed giving-up times on exhausted patches (time since finding the last reward to leaving the patch) with either five
(uniform [U]) or nine (high-variance [HV]) initial rewards in early and late training. The number of patches that were exhausted and the number
of bees that exhausted at least one patch are shown. If, by late training, bees had learned the distribution of rewards in their environments (i.e.,
had become fully informed), they should know that the patch is exhausted and hence search only briefly. This prediction is supported for U-trained
bees but not for HV-trained bees.

to stay in a patch (fig. 2C, 2D). As expected of U-T bees,
each reward found tended to decrease their tendency to
stay in the patch (a decremental response, as observed in
the training environment). In contrast, finding rewards
tended to increase HV-T bees’ tendency to remain in a
patch. This incremental response of HV-T bees in the test
environment can be partly explained by their (now con-
firmed) tendency to abandon patches before finding a re-
ward. Seven HV-T bees left a test patch without finding
rewards (for a total of 13 instances), compared to only
one instance by a U-T bee (likelihood-ratio test, weighted
by the number of instances, , ). Hence,2x p 14.0 P ! .0002
relative to the baseline tendency for HV-T bees to stay in
a patch with no rewards, finding rewards consistently in-
creased their tendency to stay.

Discussion

Testing Optimal Foraging Theory

The first optimal foraging models to include the stochastic
element of finding discrete food items in patches (e.g.,
Oaten 1977; Green 1980; Iwasa et al. 1981; McNamara
1982) revealed that the form of the best patch-leaving rule
depends critically on knowing the distribution of food
items among patches. More recent techniques (Green
2006) have now allowed us to extend those models to the
specific distributions used in our experimental environ-
ments, where the theory can be rigorously tested under
controlled conditions. By calculating the best rule in both
environments, we were able to confirm that Bayesian-like
information use is indeed critical to forage successfully
(i.e., that a naive forager would perform poorly by ignoring

information). We were also able to estimate the overall
success of bumblebees relative to an optimal Bayesian de-
cision maker (on average, bees were 80% optimal, ac-
cording to the potential value model).

Still, even though stochastic optimality models are
more realistic than their predecessors (e.g., Charnov
1976), theorists recognize that animal foragers do not
actually compute conditional probabilities and cannot
realistically follow the deterministic rules of an optimal
forager (McNamara et al. 2006). Completing this final link
from foraging theory to actual behavior is the first major
contribution of our study, by matching detailed optimal
foraging models to a plausible, non-Bayesian behavioral
mechanism that mimics the best rule (cf. Pierre and Green
2008). In this way, we have shown a remarkable corre-
spondence between the sharp incremental and decre-
mental responses predicted of an optimal forager and the
actual adjustments to bumblebees’ average tendency to
remain in a patch, estimated by the statistical model. As
expected of bees with knowledge of a uniform environ-
ment, finding rewards almost always decreased their ten-
dency to stay in a patch; as for bees with knowledge of a
highly variable environment, finding a reward early in a
patch visit sharply increased their tendency to stay.

Bayesian-Like Foraging via Learning and Memory

The use of a proximate rule that mimics a Bayesian es-
timator of patch quality does not alone imply the use of
learning or memory (e.g., Pierre and Green 2008). Nu-
merous examples of either incremental or decremental re-
sponses to resource items have been reported in studies



Bayesian-Like Learning by Bumblebees 421

of parasitoids (reviewed by Wajnberg [2006]) and a pre-
vious study of bees (Lefebvre et al. 2007). In all of these
studies, however, it could be argued that the distribution
of resources was sufficiently similar to the foragers’ an-
cestral environments, where the observed (incremental or
decremental) response to food items may have been hard-
wired by natural selection (see Wajnberg et al. 1999). The
experiments reported here are the first to show that in-
dividuals of the same species can adapt to very different
environments by using both incremental and decremental
responses in the appropriate context (highly variable and
uniform distributions, respectively).

Hence, the second major advance of our study is to
confirm that bumblebees’ tendencies to remain in a patch
are indeed shaped by adaptive learning and memory. The
adaptive use of a learned prior distribution (the central
feature of Bayesian foraging by learning) was clearly dem-
onstrated in our test environment, where the observed
behavioral differences between U-T and HV-T bees must
have been due to alternative information learned from past
experience. Consider, for example, that HV-T bees that
were initially unsuccessful in a test patch were very likely
to abandon it. This is an adaptive tactic in their previous
HV environment, where finding no rewards early in a
patch visit indicates a low-quality patch. Abandoning low-
quality patches in the HV environment is acceptable if the
forager knows that high-quality patches can be found else-
where. U-T bees with the same average experience in a
test patch, however, almost always persisted to find re-
wards. Persistence is adaptive in their previous uniform
environment (and in the test environment, incidentally)
because if foragers know that every patch is equal, then
finding no rewards early in a visit indicates that five re-
wards still remain.

The second line of evidence for bees’ adaptive learning
is the differences in behavior from early to late training.
Bees improved their average foraging success (reward in-
take rate) in a matter of hours (fewer than 45 patch visits),
and by the end of training, many aspects of their behavior
were consistent with our proximate version of the optimal
foraging rule. In particular, it is notable that by the end
of training, bees in the uniform environment abandoned
exhausted patches only about 4 s (on average) after finding
the final reward; in the early training, bees’ average giving-
up time was more than three times longer. Although the
potential value model predicts that U-T bees should never
stay on a patch long enough to find all five rewards, the
short giving-up times in late training (and the observed
decremental response to rewards) do suggest a degree of
certainty that five was the maximum number available.
This learned giving-up behavior of U-T bees is striking
when compared to a well-known study of Bayesian-like
birds (Lima 1984; see also Valone 1992). In that study

(over a course of 10 days and hundreds of patch visits),
woodpeckers consistently oversampled exhausted patches,
usually by searching the entire patch, even though only
six of 24 units (the equivalent of our flowers) were
rewarding.

Admittedly, the bumblebees in our HV environments
(both early and late training) similarly oversampled high-
quality patches after finding all nine rewards. Accordingly,
they did not show a strong decremental response after
finding a second reward, implying that, as opposed to
optimality assumptions, bees’ prior information by the end
of training did not fully match the HV distribution. Be-
cause bees encountered high-quality patches during only
half of their HV training, however, it is possible that their
training experience was not sufficient to learn the maxi-
mum of nine rewards and the optimal decremental re-
sponse that U-T bees seemed to learn. Interestingly, a
number of authors (e.g., Lima 1984; Valone 1992) have
suggested that oversampling is adaptive in foragers’ typical
(ancestral) environments, where the distribution of re-
sources is rarely so predictable as in a controlled experi-
ment. A highly clumped distribution (e.g., the negative
binomial), for example, favors an incremental response to
every reward found (Iwasa et al. 1981; Olsson and Brown
2006). Our data suggest the intriguing hypothesis that
bumblebees’ innate foraging rule, set by evolutionary his-
tory, is an incremental response; with enough experience
in the appropriate environment, however, they are also
able to learn a decremental response. An innate incre-
mental response could be adaptive because clumped dis-
tributions have been more common in bees’ ancestral en-
vironments or perhaps because an incremental response
is the best way to learn about a new environment. Our
study cannot fully address our hypothesis because bees in
early training were first exposed to extremely rewarding
flowers during the floral recognition phase of training.
Prior information from evolutionary history was therefore
briefly tainted to an unknown extent.

Bayesian-Like Foraging in an Ecological Context

Finally, the behavior of nectar foragers has interesting im-
plications in the ecological context of pollination, and our
study is relevant in this respect. Some authors have hy-
pothesized that bumblebees’ apparently fixed rules of
thumb, such as “leave a plant after two consecutive empty
flowers,” influence the evolution of floral displays and re-
wards (e.g., Harder et al. 2004), including the phenomenon
of nonrewarding (cheating) flowers (Bailey et al. 2007).
Our study demonstrates, however, that bumblebees’ re-
sponse to nonrewarding flowers is certainly more dynamic
than the proposed rule of thumb. There are at least two
situations in which a bee should accept unrewarded search
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time on a plant: (1) it has experienced a uniform envi-
ronment in the past and expects to find a certain number
of rewards per plant and (2) after experiencing a highly
variable environment in the past, the bee finds some re-
wards on the plant, encouraging it to stay and gain more
information about the plant’s true quality.

It becomes a greater challenge to determine the outcome
of selection on floral traits when pollinator behavior on a
plant with a certain trait value depends on the traits of
other plants in the environment. It is now clear that bum-
blebees in particular have a remarkable ability to learn
about the resources in their environment. As a result, bees’
patch-leaving behavior (and the pollination consequences,
from a plant’s perspective) should depend on both the
mean quality of rewards (Biernaskie and Gegear 2007) and
the distribution of rewards (this study) that they learn from
past foraging experience.
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A bumblebee worker finds a rewarding “flower.” Photograph by Jay Biernaskie.


