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I present an increment-decay model for the mechanism of bumble bees’ decision to depart from inflorescences. The probability of
departure is the consequence of a dynamic threshold level of stimuli necessary to elicit a stereotyped landing reaction. Reception
of floral nectar lowers this threshold, making the bee less likely to depart. Concurrently the threshold increases, making departure
from the inflorescence more probable. Increments to the probability of landing are an increasing, decelerating function of nectar
volume, and are worth less, in sequence, for the same amount of nectar. The model is contrasted to threshold departure rules,
which predict that bees will depart from inflorescences if the amount of nectar in the last one or two flowers visited is below a
given level. Field tests comparing the two models were performed with monkshood (Aconitum columbianum). Treated flowers
contained a descending series of nectar volumes (6 to 0 4L of 30 % sucrose solution). The more nectar that bees encountered in the
treated flowers, the more likely they were to remain within the inflorescence after subsequently visiting one to three empty flowers.

I discuss the differences between rules and mechanisms in regard to cognitive models of foraging behavior.

1. Introduction

For the majority of flowering plants, successful reproduction
depends on a mutualism with insect pollinators. As with all
such coevolved interactions, the two parties are motivated by
self-interest: the plant is provided with an efficient means
of pollen transfer, while the pollinator receives energy and
nutrients in the form of floral nectar and pollen. The
fine details of this interaction include factors such as the
number of flowers that the pollinator should visit within an
inflorescence before departing and moving to another plant
of the same species. Plants should maximize the amount
of pollen exported to the stigmas of conspecifics, while
simultaneously minimizing the level of geitonogamous self-
pollination. The pollinator, meanwhile, should behave so
as to maximize its net rate of energy gain, and should
stay within an inflorescence until it is more profitable to
depart and move to another. Pollinator departure from
inflorescences thus falls within the scope of patch departure
in foraging theory, a central sub-discipline of behavioral
ecology [1].

Evolutionary study of patch departure began with the
marginal value theorem (MVT) [2], which specifies how

foragers should exploit patches in order to maximize the
long-term net rate of energy gain. However, the MVT
itself does not specify a realistic departure rule or policy
[3, 4]. This is due to the MVT’s assumption of complete
information: the forager is in effect omniscient, know-
ing all the relevant data about a patch before entering
it. Proximal or “cognitive” models of patch departure
should produce roughly the same decisions as would the
MVT, while making realistic use of available environmental
cues.

Theoretical work has shown how information gained
while foraging within patches can be used to construct an
optimal departure policy [3, 5, 6]. A general, flexible formal-
ism makes use of Bayes’ Theorem to derive optimal departure
rules given various distributions of the number of prey
within patches [3, 7-11]. Graphical representations of several
such models are shown in Figure 1. Following Stephens and
Krebs, I refer to these models as increment-decay processes,
due to the continuous dynamics of the expected remaining
patch time [12]. These models are interesting for reasons
other than just the possibility of stochastic optimization.
Notably, the incrementing and decrementing dynamics have
neurobiological analogues, in processes such as habituation
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FiGUure 1: Graphical Representations of several Bayesian patch
departure rules [7, 12], for three distributions of the number of
prey within patches. The ordinate represents expected remaining
time in the patch. Solid circles represent encounters with prey. (a)
For the Poisson distribution, prey captures yield no information
and departure occurs after a fixed time independent of the number
of prey encountered. (b) For the binomial distribution, each
prey capture decrements expected remaining patch time. (c) For
the negative binomial, each prey capture increments expected
remaining patch time, but each increment in sequence is smaller.

and sensitization to stimuli. Waage [13] first suggested that
the parasitic wasp Venturia (=Nemeritis) canescens uses an
increment-decay process for searching and departing from
patches of its host.

One can see that, in outline, an increment-decay model
could describe the behavior of bumble bees or other nectari-
vores visiting multiple-flowered plants. An inflorescence can
be considered as a patch, and each encounter with a prey
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(in this case, a flower that contained nectar) would affect
the expected remaining number of flowers to be visited on
the plant before departing. However, such models have only
very rarely been explored in regard to bee foraging behavior
[14-16]. The reason is that departure from inflorescences
can often be analyzed via a discrete version of the MVT that
applies to the situation of overlapping encounters, meaning
that the forager meets more than one prey at a time [17, 18].
Many plants have an inflorescence in which the flowers are
arranged vertically on a central stem, blooming sequentially
from the bottom upward. As a result, flowers near the bottom
often contain more nectar than others higher on the stem
[19]. To maximize the long-term net rate of energy gain,
bees should begin at the bottom of such an inflorescence
and work upward. At some point the diminishing amounts
of nectar in higher flowers would make it more profitable
to depart the inflorescence and move to another plant.
We should then observe that bees often depart from such
vertical inflorescences before visiting all available flowers,
and this has been observed in the field [19-22] and in the
laboratory [23]. Thus a number of authors have proposed the
following “threshold departure rule”: the bee should depart
the inflorescence when

E(S) < E(L), (1)

where E(S) (stay) is the expected profitability from the next
flower visited within the current inflorescence, and E(L)
(leave) is the expected profitability from the first flower
visited after departure [24-28].

The original threshold departure rules are now generally
thought to be too simplistic a description of patch departure
in bumble bees [1, 14, 15]. In this paper I present an
increment-decay model, similar to those that have been
proposed for parasitoids, but specifically tailored to bumble
bees. I present the results of field experiments designed to
contrast the model’s predictions with those of the threshold
departure rules.

2. The Model

The increment-decay model for patch departure presented
here was originally applied to bumble bee foraging at a
higher level, the situation in which there is patchiness in
nectar within large meadows of the relevant plant species,
but no discrete patches as such [14]; it was soon realized that
a similar model in outline could apply to departure behavior
within inflorescences.

The first assumption is that bumble bees land on
inflorescences and begin to probe the flowers for nectar if the
set of stimuli presented by the inflorescence are sufficient to
release a stereotyped behavioral pattern, hereafter called the
landing reaction [29]. In vector notation, let s be a vector
of stimulus intensities from various modalities, including
visual, olfactory, and tactile, and let w represent a vector of
weightings for each s; € s; the scalar product z = s"w defines
areal number z that is mapped onto a decision function f(z)
that returns the conditional probability of landing given z,
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P(Land | z). The simplest form of f(z) would be the step
function

z>z¥%,

L
fz) = { (2)

0, z<z¥%,

where z* is a threshold level necessary to evoke the landing
behavior. In (2) the response is all or none for fixed z;
modification to make the response probabilistic may easily
be done by making f(z) a sigmoid function:

1
1+ Aexp(—f(z—z*))"

flz) = 3)

Equation (3) approaches a step function in the limit
as 5 — oo. Since (2) and (3) return a conditional probability,
we may use for f(z) any function that is also a distribution
function of a random variable; thus the requirements are
that f(z) is right-continuous, is nondecreasing, approaches
0 in the limit as z — —oo, and approaches 1 in the limit as
z — oo,

The above statements are an extremely simplified
description of a cognitive system that integrates sensory
information and initiates behavioral output. Note that the
weightings to various stimuli presented by the flowers may
include highly negative weightings, making the bee less likely
to land; such stimuli include scent marks left by other bees,
holes in nectar-robbed flowers, or marks on flower petals
made by bees’ tarsal claws. In addition, the measures of and
the weightings to these stimuli may be both dynamic and
varied among individuals. In other words, the inputs s; € s
and the weights w; € w are not assumed to be fixed, but
may change due to learning, or may vary due to individual
differences among bees: for example, visual accuracy can vary
with bee head size [30].

The core assumption of the model is that the threshold
parameter z* (or equivalently, the function f(z) itself) is
a dynamic variable, continually changing with time and in
the light of recent experience. The probability that a bee will
probe the next flower or will depart the inflorescence thus
depends on how f(z) changes with time and experience.
Finding nectar causes z* to decrease, making the bee more
likely to probe the next flower, and thus incrementing the
expected remaining time within the inflorescence. Concur-
rently, I assume that z* spontaneously increases, so that
the expected remaining time within the inflorescence decays
between nectar encounters.

The second assumption is that there are maximum and
minimum values of z*, and these are reflecting boundaries.
The minimum is automatically reflecting since z* increases
continually. Upon reaching its maximum, I assume that the
threshold then lowers until the next nectar encounter; if
the bee has departed the inflorescence at that point, the
probability of flower stimuli evoking the landing reaction
increases monotonically during interplant travel. Thus the
longer the distance to the next plant, the lower will be the
threshold z* upon encountering the next inflorescence. This
means that bees will tend to stay longer within inflorescences
the greater the average distance between plants. This is

P (land|z)

S

Time

Encounters with floral nectar

FIGURE 2: A graphical interpretation of the increment-decay model
for bumble bee patch departure. The conditional probability of
landing on the next flower given the weighted stimuli sum z, P(Land
| z), is plotted as a function of time. The probability declines
monotonically with time. If the bee finds nectar within a flower,
the probability increases in proportion to the nectar volume. Solid
circles represent reception of nectar, with the radius proportional
to the nectar volume. Note that for the same amount of nectar the
amount of incrementing is less in sequence, following (4) in the
text. When the threshold z* reaches its maximum value, it then
spontaneously decreases, increasing the landing probability during
interpatch travel (arrow).

a fundamental prediction of the MVT, here produced via a
mechanism similar to that proposed by Ollason [31].

The above assumptions can be interpreted graphically
as an increment-decay process (Figure 2). Each reception
of nectar (solid circles) decreases z*, thus increasing the
probability of landing on the next flower, increasing the
expected remaining patch time by an amount proportional
to the volume of nectar. Concurrently, z* increases between
nectar encounters, meaning that the expected remaining
time within the inflorescence decays.

The dynamics of expected remaining patch time resem-
ble the potential function of McNamara [6], with several
important differences. Here the processes of decay and
increment affect a threshold response to stimuli, with the
result that the effects of nectar reception may be spread
across several discrete patches, for example, flower groupings
within the same plant or on adjacent plants [32, 33]. In
the model the decision to depart is influenced by possibly
many attributes of inflorescences besides the standing crops
of nectar. This explains, for example, the observation by Pyke
that bees stay longer within larger inflorescences of Aconitum
columbianum even when these contain no more nectar than
smaller inflorescences [19]. Larger inflorescences will have a
greater value of z, all other things being equal.

Several points should be clarified concerning the decay
process. In Figure 2 the rate of decay is constant for illustra-
tive purposes, but in general it may be nonlinear, following
an exponential or hyperbolic trajectory, for example. The
increments are shown happening instantaneously, as in other
such models (Figure 1); in reality each flower visit includes
a handling time. We may keep the convenient form shown
by assuming that the increments represent the net effect of
increase due to nectar minus decay incurred during the time
of the flower visit. This allows for the possibility that a flower



visit may actually result in a net decrement in expected
remaining patch time, if the handling time for that flower
is long enough. In addition, the model to this point does not
explicitly specify the probability of departure from the whole
inflorescence, which may be less than 1 given that the bee
does not land (i.e., bees may reject the current flower, but stay
within the same inflorescence). The conditional probability
of departure given z may be specified by any nonnegative
function of z bounded above by 1 — P(Land | z).

Reception of energy in the form of floral nectar lowers
the threshold z*, thus incrementing the expected remaining
patch time. In the formal Bayesian foraging models cited
above, the increments from prey capture have been constant
or limited to a small number of values [3, 8, 10]. In the
current model the “prey” is a continuous variable, an amount
of energy depending on a volume of nectar and the nectar
sugar concentration. The change in z* will be given by a
function ¢ that has as arguments the volume of nectar (given
a constant sugar concentration) and other information, such
as the order of encounter of flowers within the inflorescence.
I assume that ¢ = ¢(V,k) is a function of at least two
arguments, the volume of nectar V' in the flowers, and the
order of their encounter within the inflorescence, k. I make
the following assumptions for the form of ¢(V, k):

2
W, P, W

v % 2<% <o (4)

where V is the volume of nectarand k = 1,2,... nis the order
of encounter, with k = 1 being the first flower encountered
after the threshold has attained its maximum and thus
begun to decrease. The first two partial derivatives mean
that increments are an increasing and decelerating function
of the amount of nectar. This is simply the familiar Weber-
Fechner Law for the subjective scaling of stimuli (see [34—
37] for further application of the Weber Law to amount in
foraging models). The final assumption in (4) states that the
increments are a declining function of order; each increment
in sequence is worth less for the same amount of nectar, until
the threshold z* has reached its maximum.

The evolutionary reasons for these assumptions about
the form of ¢ follow from the typical distribution of nectar
standing crop within and among plants. Often there is
a highly clumped distribution, caused by differences in
secretion rates between plants or due to local search by the
bees themselves [38, 39]. Responding to occasional bonanzas
of nectar within flowers in a linear manner might cause
bees to stay much longer than would be optimal within an
inflorescence. The decline with order follows from the opti-
mal response of a Bayesian forager when there is a clumped
distribution of prey within patches. Iwasa et al. derived
optimal Bayesian policies for foragers encountering Poisson,
binomial, and negative binomial distributions of prey within
patches [7]. An overlooked feature of their equations was
that for the negative binomial distribution, which indicates
clumping of prey, each increment in sequence is less than the
previous increment until the forager has departed the patch
(Figure 1(c)). In neurobiology, this decline in the response
to stimuli with order of presentation is known as adaptation
[40].
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The mathematical details in the model are important
in distinguishing it from other psychological or constrained
optimality models for patch departure. The major difference
concerns a horizon effect: the “time window” over which past
experience affects departure decisions may appear to change.
For example, decisions in one patch may be influenced by
experience in previously visited patches if the bee departed
from those earlier patches before the threshold z* had
reached its maximum. If the latter occurs, however, the
bee’s behavior in the current patch may appear to be a
function of the last travel distance only. This difference in
the apparent time window provides direct contrast with
threshold departure and other “run of bad luck” (ROBL)
models. In a one-flower threshold departure rule the decision
to depart at each flower is independent of experience at
previous flowers, while in the general ROBL model there
is always a specified time or number window beyond
which past experience has little or no bearing on present
decisions. Similar arguments apply to general memory
window rules of the Linear Operator Model (LINOP) or
exponentially weighted moving average (EWMA) forms (4,
41, 42]. All such models employ a weighting of events
within the time window to predict current decisions. A
heavy weighting to more recent experience can explain
the often observed strong effect of last travel distance on
patch departure [42]. However, this weighting then predicts
that foragers will rapidly adapt to changes in conditions
such as average interpatch travel time, which is usually not
the case.

The proposed model can explain the results of diverse
experiments with bumble bees. Thomson et al. observed
that bumble bees departed from empty umbels of Aralia
hispida after visiting two flowers [32]. After leaving an umbel
that had been enriched by placing 0.5 uL sucrose solution
into all 12 open flowers, the bees probed an average of
five flowers on a subsequent empty umbel before departing.
On the enriched umbels, bees visited an average 14 flowers
before departing, meaning that they revisited two flowers.
These revisited flowers presumably contained the strongly
negative stimulus of a marking pheromone, meaning that
z for recently visited flowers will be lower than that for a
simply empty flower. To be consistent with the model, other
bees arriving at such recently visited flowers would probe
fewer than two on average before departing: they would
either visit one-flower or not land on the umbel at all; this
behavior has been noted in other experiments [26, 43—45].
After departing from the enriched umbel, if the threshold
z* remained lowered due to the reception of nectar, there
would then be a carryover effect on the ensuing empty
umbel.

In a set of laboratory experiments with artificial umbels,
Taneyhill and Thomson observed that bumble bees probed
approximately the same number of flowers in umbels
containing either 2 or 4 yL of nectar in each of eight artificial
flowers, but fewer in umbels containing 1 L in each flower
[33]. For the increment-decay model, this would suggest that
there was little difference in the value of ¢ for 2 and 4 uL
due to its decelerating form, but that the effect of 1 uL was
significantly less. When bees visited sets of three artificial
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umbels, one empty and the other two containing two of
the above three volumes of nectar, the numbers of flowers
probed within the empty umbels depended on both the
nectar volumes in previously visited umbels and their order
of encounter. The bees probed almost identical numbers of
flowers within empty umbels after first visiting either an
umbel filled with 2 or 4 uL in each flower, and also nearly
identical numbers after visiting umbels with both amounts in
either order. However, they probed more after a 2 thana 1 uL
umbel, and more after first a 2 and then a 1 gL umbel than
vice versa. These results were consistent with the assumption
that each increment is worth less, in sequence, for the same
value of V: the asymmetry occurs because (¢(2, k) + ¢(1, k +
1)) > (¢(1,k) + ¢(2,k + 1)). If 4 and 2 uL are interchange-
able, however, then (¢(4,k) + ¢(2,k + 1)) = (¢(2,k) +
¢(4,k + 1)), and thus the order of presentation makes
no difference.

Cresswell also studied bumble bees foraging from ring-
like inflorescences, in wild bergamot Monarda fistulosa [26].
He obtained estimates of departure probability as a function
of nectar volume by finding the amount of nectar that
was just sufficient to make bees always stay, recording the
probability of departure from empty flowers, and drawing a
line between the two in a plot of departure probability as a
function of nectar volume. When values from this function
were used in computer simulations, the predicted numbers of
flowers visited consistently overestimated the actual numbers
visited in study plots. This can easily be explained by the
increment decay model due to its assumptions that departure
probability increases continually and that each increment
with nectar is worth less in sequence. In the stochastic
threshold departure rule, departure probabilities remain the
same at each flower for the same nectar volume.

Formal parameterizations of the model will be unique
to each experimental system. In the field, the important
flower stimuli and their relative weightings in the landing
decision can be determined by statistical techniques such as
principal components analysis, as Cresswell and Robertson
have done for Campanula rotundifolia [46]. Recently much
progress has been made in the analysis of how stimuli such
as marking pheromones affect bees’ decisions to exploit
patches, and how such reactions are blended with experience
and variation within individuals [47, 48].

The increment decay model makes several robust pre-
dictions that can be tested in comparison to the thresh-
old departure rules. A deterministic, one-flower threshold
departure rule predicts that bumble bees will always depart
an inflorescence after finding an empty flower, since the
threshold volume must be equal to or greater than zero.
The analogous stochastic rule predicts that bees will depart
after finding an empty flower with a fixed probability
independent of experience at other flowers. The increment
decay model, however, predicts that departure probability
at empty flowers will decrease with increasing nectar in
previously encountered flowers. The same arguments may
be applied to two-flower and similar departure rules. I thus
tested the two alternative models in the field, using one of the
field systems that spawned the original threshold departure
rules.

3. Methods

Field work was done in the vicinity of the Rocky Mountain
Biological Laboratory, Gothic, Colorado. The protocol for
the field experiments was to remove nectar from flowers
within plants with vertical inflorescences and to place known
amounts of sucrose solution (in all experiments I used
reagent grade sucrose, 30 g solute per 100 mL distilled water)
into flowers that bees would be likely to visit prior to the
empty flowers. Since bumble bees often forage from plants
with vertical inflorescences by starting near the bottom and
moving upward [20, 21], I placed the sucrose solution into
the bottom flowers in all experiments, and drained the
second or second and third flowers from the bottom of all
floral nectar.

The experiments reported here were done using monks-
hood, Aconitum columbianum. The monkshood inflores-
cence has dark purple, zygomorphic flowers borne on a
central spike, with two cup-shaped nectaries hidden inside a
hood-shaped cap formed by the fusion of two petals (see [49]
for illustrations of how bees forage from monkshood). This
species is well suited to tests of the threshold departure rules,
because the structure of the flower makes it difficult for bees
to sense the presence of nectar before landing and probing
the flower, and the nectar can easily be removed from the
nectaries within the flowers.

The first experiment tested one-flower threshold depar-
ture rules. I used 4 nectar treatments for the bottom flowers:
4,2, 1, and 0 (=control) yL of 30% sucrose solution. The
largest amount was chosen because this was approximately
the highest standing crop volume found in surveys of
the study populations (sugar concentration of samples was
usually higher, generally in the range of 40% to 50% sucrose
equivalents, so the treatments actually contained less sugar).
I placed these amounts of nectar into the bottom flowers of
study plants and drained the flower above the bottom of all
the nectar. Although it would be easy to ensure that empty
flowers contained no nectar at all by removing the nectaries,
I did not do this for fear of altering the bees’ behavior. Instead
I checked the flowers for nectar every 20 minutes using 1 yL
microcapillary tubes. Hamilton dispensing microsyringes
were used to place the sucrose solution into the flowers.
Observations were made with 6 plants on each observation
day, and I used plants with at least 6 open flowers on the
inflorescence. Plants were not selected at random; rather
they were chosen from those that had nectaries in very
good condition. While the bees visiting the plants were not
marked, due to identification of caste and species it was
determined that a minimum of 6 individual bees visited the
plants.

I recorded the pattern of visitation, time of visit, caste,
and species for all bees visiting the test plants. Because I
found it difficult to accurately record data for all five nectar
amounts at the same time, each day of observation was
devoted to one nectar volume only; data for each replication
of each treatment are thus analyzed separately.

A second experiment with A. columbianum tested both
one- and two-flower threshold departure rules. I used as
nectar treatments 6, 4, 2, 1 and 0 yL 30% sucrose solution.



TaBLE 1: Departure patterns of bumble bees on treated inflo-
rescences of Aconitum columbianum. Four microliters of 30%
sucrose solution were placed in bottom flowers of the inflorescence,
with zero microliters (empty) in second-from-bottom flowers. The
notation in this and all subsequent tables is X, 2 standing for bees
that began by visiting the empty second flower first, without visiting
the bottom flower. 1, 2 stands for bees visiting the treated bottom
flower and then the empty second flower. Goodness of fit test for the
null hypothesis of equal probability to depart: y*> = 4.67, P < .01.

Stay Depart Probability (Depart)
X,2 13 6 0.32
1,2 19 1 0.05

TaBLE 2: Departure patterns of bumble bees on treated inflo-
rescences of Aconitum columbianum. Second replication of the
experiment with four microliters of 30% sucrose solution placed in
bottom flowers of the inflorescence, zero in second-from-bottom
flowers. Goodness of fit test for the null hypothesis of equal
probability to depart: y* = 5.24, P < .01.

Stay Depart Probability (Depart)
X,2 11 5 0.31
1,2 22 1 0.04

TaBLE 3: Departure patterns of bumble bees on treated inflores-
cences of Aconitum columbianum. Two microliters of 30% sucrose
solution placed in bottom flowers of the inflorescence, zero in
second-from-bottom flowers. y*> = 1.73, P > .05.

Stay Depart Probability (Depart)
X,2 22 10 0.31
1,2 19 3 0.15

I drained the second and third flowers from the bottom of
all nectar, and again checked these every 20 minutes using
microcapillary tubes. I used a Rainin digital dispensing pipet
to place sucrose solution into the bottom flowers. During this
experiment, I was able to gather data for all five amounts of
sucrose on each day of observation. I changed the amount
of sucrose in each study plant every two hours during each
day. Bee density in this experiment was greater than for
the first experiment; at least 10 individuals were visiting the
experimental plants.

Data from the first experiment were cast into 2 X 2
contingency tables and analyzed via two-way tests of inde-
pendence, with the null hypothesis that the probability
of departure from an empty flower was independent of
previous experience (i.e., whether the bee had first visited
the treated flower). Data from the second experiment were
analyzed via an R X C contingency table test [50].

4. Results

In tests of one-flower threshold departure rules using Aconi-
tum columbianum, bumble bees’ probability of departure
from empty flowers decreased with increasing volume of
nectar in previously encountered bottom flowers (Tables
1, 2, 3, 4, 5, 6, and 7). With 4uL of sucrose solution
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TaBLE 4: Departure patterns of bumble bees on treated inflo-
rescences of Aconitum columbianum. Second replication of two
microliters of 30% sucrose solution placed in bottom flowers of the
inflorescence, zero in second-from-bottom flowers. y* = 3.95, P <
.05.

Stay Depart Probability (Depart)
X,2 31 17 0.35
1,2 24 4 0.14

TaBLE 5: Departure patterns of bumble bees on treated inflores-
cences of Aconitum columbianum. One microliter of 30% sucrose
solution placed in bottom flowers of the inflorescence, zero in
second-from-bottom flowers. Xz =0.269, P > .5.

Stay Depart Probability (Depart)
X,2 21 5 0.19
1,2 19 3 0.14

TABLE 6: Departure patterns of bumble bees on treated inflo-
rescences of Aconitum columbianum. Second replication of one
microliter of 30% sucrose solution placed in bottom flowers of
the inflorescence, zero in second-from-bottom flowers. XZ = 3.72,
P < .06.

Stay Depart Probability (Depart)
X,2 33 7 0.18
1,2 31 1 0.03

TaBLE 7: Departure patterns of bumble bees on treated inflores-
cences of Aconitum columbianum. Control treatment with zero
microliters of 30% sucrose solution in bottom flowers of the
inflorescence, and zero in second-from-bottom flowers. y*> =
1.63, P >.1.

Stay Depart Probability (Depart)
X,2 25 14 0.36
1,2 10 8 0.44

in bottom flowers, the bees almost never departed after
subsequently finding the empty flower if they had first visited
the treated flower (probabilities of departure = 0.04 and
0.05 for two replicate experiments). In the control treatment
with both flowers empty, the probability of departure from
the empty second flower was greater if the bee had first
visited the treated (empty) bottom flower, as is predicted by
the increment-decay model, although the two probabilities
were not statistically different. The probability of departure
from the empty second flower, given that it was visited first,
was about 0.3 (overall P = .29, N = 220), and in each
experiment was fairly close to this value except for the two
experiments using 1 yL. Observations collected on different
days showed nearly identical patterns, except for the second
1 uL treatment.

Results of the two-flower tests (Tables 8 and 9) were in
accord with the one-flower experiments. The probabilities
of departure depended on both the amount of nectar in the
treated bottom flower and the pattern of visitation (3-way
test of independence using a log-linear model; G = 28.085
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TaBLE 8: Departure patterns of bumble bees on treated inflores-
cences of Aconitum columbianum. Control treatment with zero
microliters of 30% sucrose solution in bottom flowers of the
inflorescence, and zero in second-from-bottom flowers (2), and
zero in third-from-bottom flowers (3). The notation in this and
Table 9 is X, 2 or 3 stands for bees that began by visiting the empty
second or third flower first, without visiting the bottom flower. X,
2 and 3 stands for bees visiting both empty flowers first. 1, 2, or 3
stands for visiting the treated bottom flower and then the empty
second or empty third flower. 1, 2 and 3 stands for visiting the
treated bottom flower and then both the empty second and empty
third flowers.

Stay Depart Probability (Depart)
X,2o0r3 65 27 0.29
X,2and 3 14 6 0.30
1,2o0r3 20 0.048
1,2and 3 8 1 0.11

TaBLE 9: Departure patterns of bumble bees on treated inflo-
rescences of Aconitum columbianum. The experiment used a
descending series of volumes of 30% sucrose solution, from 6 to
0 microliters, in bottom flowers of the inflorescence, with second-
from-bottom and third-from-bottom flowers empty. The notation
for visit patterns is as detailed in Table 8. Three-way log-likelihood
test of independence, G = 28.085, P < .01 for the 3-way interaction.

Stay Depart Probability (Depart)
6uL
X,2o0r3 38 12 0.24
X,2and 3 2 4 0.67
1,2o0r3 30 0 0
1,2 and 3 11 0 0
4ul
X,2o0r3 33 17 0.34
X,2and 3 7 2 0.22
1,2o0r3 55 0.018
1,2and 3 33 4 0.11
2ul
X,2o0r3 30 17 0.36
X,2and3 3 4 0.57
1,2o0r3 38 2 0.5
1,2and 3 20 3 0.13
1uL
X,2o0r3 26 11 0.3
X,2and3 7 2 0.22
1,2o0r3 49 4 0.08
1,2and 3 21 3 0.125
OuL
X,2o0r3 97 43 0.31
X,2and 3 25 9 0.265
1,2o0r3 52 13 0.20
1,2and 3 22 7 0.24

P < .01 for the 3-way interaction). As in the one-flower
study, the probabilities of departure from the empty second
flowers decreased with increasing amounts of sucrose placed

in the bottom flower. With 6 yL sucrose solution placed
in the bottom flower, the bees never departed after next
probing either one or two empty flowers. The probabilities
of departure from empty second or third flowers visited
first were again about 0.3, as in the one-flower experiments
(overall, P = .31, N = 324), with relatively little variation
across treatments (range, 0.24 to 0.36).

5. Discussion

The results from field experiments with Aconitum colum-
bianum strongly suggest that the bumble bees did not use
a one- or two- flower threshold departure rule. In many
cases the bees did not depart after visiting from one to three
flowers that were, to the limit of the experimental techniques,
empty of nectar. The probabilities of departure from empty
flowers were instead influenced by the amounts of nectar
in previously encountered flowers, meaning that the bees
were also not using a stochastic threshold departure rule.
When testing threshold departure rules one could continue
to advocate them with an increasing number window; in the
present case the results do not falsify a three-flower stochastic
threshold departure rule. However, this line of reasoning
could be extended indefinitely. To interpret the results of
Thomson et al. [32] in that manner, bees visiting umbels of
Aralia hispida would have to have been switching between a
two-flower and a five-flower stochastic threshold departure
rule. It seems much more parsimonious to think of expected
departure time or number as being flexible, able to vary with
time and experience.

In this paper I have presented the increment-decay
process as a general framework for understanding patch
departure in bumble bees. Such a model, in which patch
departure is considered as an observable aspect of a
dynamical system, addresses the important question of
how cognitive mechanisms of foraging behavior should be
considered in theory above the neurobiological level. The
terms “rules” and “mechanisms” are perhaps considered
interchangeable by some, yet I argue that there can be subtle
but important differences between the two. The word “rule”
often denotes the type of if-then procedure found in expert
computer systems or other such human constructs; many
such rules have been proposed in foraging theory, including
give-up time rules, fixed number rules, failure rules, and
the threshold departure rules [3, 8, 24, 51]. However, other
proposed mechanisms, such as those described in the present
paper, cannot easily be expressed in this form. An ever-
present danger in building cognitive models of behavior is
that they run the risk of assigning to the animal processes that
may account for the observations, but which may not in fact
exist. Representing mechanisms as dynamical systems may
bring the models closer to the underlying neurobiology while
sacrificing ease of understanding them in commonsense
terms.

Constructing cognitive models for patch departure
behavior in this manner (adding details of mechanism
peculiar to each organism) means that the results become
further removed from the MVT [4]. What, then, is the
purpose of the optimality models? The standard answer is



that they help build intuition about the mechanisms that
one expects to find [52, 53]. The model presented in this
paper was suggested by observations of bees and by the
results of experiments. However, the approach was guided
by principles from optimality theory, in both the overall
structure of the model and in its assumptions concerning
how experiences affect the model’s dynamics. Increment-
decay processes appear to be a fortunate compromise
between the proximal and adaptationist descriptions, having
their roots in Bayesian inference while at the same time
bearing resemblance to neurobiological processes. Since they
have the potential to explain so many aspects of patch
departure [11], they should be investigated in depth for
bumble bees and other foragers.
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